Suppr超能文献

模式主性子空间追踪与矩阵尖峰协方差模型

Mode-wise principal subspace pursuit and matrix spiked covariance model.

作者信息

Tang Runshi, Yuan Ming, Zhang Anru R

机构信息

Department of Statistics, University of Wisconsin-Madison, Madison, WI, USA.

Department of Statistics, Columbia University, New York, NY, USA.

出版信息

J R Stat Soc Series B Stat Methodol. 2024 Sep 2;87(1):232-255. doi: 10.1093/jrsssb/qkae088. eCollection 2025 Feb.

Abstract

This paper introduces a novel framework called Mode-wise Principal Subspace Pursuit (MOP-UP) to extract hidden variations in both the row and column dimensions for matrix data. To enhance the understanding of the framework, we introduce a class of matrix-variate spiked covariance models that serve as inspiration for the development of the MOP-UP algorithm. The MOP-UP algorithm consists of two steps: Average Subspace Capture (ASC) and Alternating Projection. These steps are specifically designed to capture the row-wise and column-wise dimension-reduced subspaces which contain the most informative features of the data. ASC utilizes a novel average projection operator as initialization and achieves exact recovery in the noiseless setting. We analyse the convergence and non-asymptotic error bounds of MOP-UP, introducing a blockwise matrix eigenvalue perturbation bound that proves the desired bound, where classic perturbation bounds fail. The effectiveness and practical merits of the proposed framework are demonstrated through experiments on both simulated and real datasets. Lastly, we discuss generalizations of our approach to higher-order data.

摘要

本文介绍了一种名为逐模式主性子空间追踪(MOP - UP)的新颖框架,用于提取矩阵数据在行和列维度上的隐藏变化。为了增强对该框架的理解,我们引入了一类矩阵变量尖峰协方差模型,这些模型为MOP - UP算法的开发提供了灵感。MOP - UP算法由两步组成:平均子空间捕获(ASC)和交替投影。这些步骤专门设计用于捕获包含数据最具信息性特征的行方向和列方向降维子空间。ASC利用一种新颖的平均投影算子作为初始化,并在无噪声设置下实现精确恢复。我们分析了MOP - UP的收敛性和非渐近误差界,引入了一个分块矩阵特征值扰动界,该界证明了所需的界,而经典扰动界在此处失效。通过在模拟数据集和真实数据集上进行实验,证明了所提出框架的有效性和实际优点。最后,我们讨论了将我们的方法推广到高阶数据的情况。

相似文献

1
Mode-wise principal subspace pursuit and matrix spiked covariance model.
J R Stat Soc Series B Stat Methodol. 2024 Sep 2;87(1):232-255. doi: 10.1093/jrsssb/qkae088. eCollection 2025 Feb.
2
Sparse-view spectral CT reconstruction via a coupled subspace representation and score-based generative model.
Quant Imaging Med Surg. 2025 Jun 6;15(6):5474-5495. doi: 10.21037/qims-24-2226. Epub 2025 May 28.
5
Stabilizing machine learning for reproducible and explainable results: A novel validation approach to subject-specific insights.
Comput Methods Programs Biomed. 2025 Jun 21;269:108899. doi: 10.1016/j.cmpb.2025.108899.
6
Comparison of self-administered survey questionnaire responses collected using mobile apps versus other methods.
Cochrane Database Syst Rev. 2015 Jul 27;2015(7):MR000042. doi: 10.1002/14651858.MR000042.pub2.
8
Gender differences in the context of interventions for improving health literacy in migrants: a qualitative evidence synthesis.
Cochrane Database Syst Rev. 2024 Dec 12;12(12):CD013302. doi: 10.1002/14651858.CD013302.pub2.
9
Antidepressants for pain management in adults with chronic pain: a network meta-analysis.
Health Technol Assess. 2024 Oct;28(62):1-155. doi: 10.3310/MKRT2948.
10
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2021 Apr 19;4(4):CD011535. doi: 10.1002/14651858.CD011535.pub4.

本文引用的文献

1
Cocaine Use Prediction With Tensor-Based Machine Learning on Multimodal MRI Connectome Data.
Neural Comput. 2023 Dec 12;36(1):107-127. doi: 10.1162/neco_a_01623.
2
Optimal High-order Tensor SVD via Tensor-Train Orthogonal Iteration.
IEEE Trans Inf Theory. 2022 Jun;68(6):3991-4019. doi: 10.1109/tit.2022.3152733. Epub 2022 Feb 18.
4
Denoising atomic resolution 4D scanning transmission electron microscopy data with tensor singular value decomposition.
Ultramicroscopy. 2020 Dec;219:113123. doi: 10.1016/j.ultramic.2020.113123. Epub 2020 Sep 25.
5
Optimal Shrinkage of Eigenvalues in the Spiked Covariance Model.
Ann Stat. 2018 Aug;46(4):1742-1778. doi: 10.1214/17-AOS1601. Epub 2018 Jun 27.
6
MULTILINEAR TENSOR REGRESSION FOR LONGITUDINAL RELATIONAL DATA.
Ann Appl Stat. 2015 Sep;9(3):1169-1193. doi: 10.1214/15-AOAS839. Epub 2015 Nov 2.
7
Tensor Regression with Applications in Neuroimaging Data Analysis.
J Am Stat Assoc. 2013;108(502):540-552. doi: 10.1080/01621459.2013.776499.
8
Model Selection and Estimation in the Matrix Normal Graphical Model.
J Multivar Anal. 2012 May 1;107:119-140. doi: 10.1016/j.jmva.2012.01.005.
9
Are a set of microarrays independent of each other?
Ann Appl Stat. 2009 Jan 1;3(3):922-942. doi: 10.1214/09-AOAS236.
10
MPCA: Multilinear Principal Component Analysis of Tensor Objects.
IEEE Trans Neural Netw. 2008 Jan;19(1):18-39. doi: 10.1109/TNN.2007.901277.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验