Suppr超能文献

血流动力学网络的体积最优持久同调支架与脑磁图θ-阿尔法非周期性动力学共同变化。

Volume-optimal persistence homological scaffolds of hemodynamic networks covary with MEG theta-alpha aperiodic dynamics.

作者信息

Nguyen Nghi, Hou Tao, Amico Enrico, Zheng Jingyi, Huang Huajun, Kaplan Alan D, Petri Giovanni, Goñi Joaquín, Zhao Yize, Duong-Tran Duy, Shen Li

机构信息

Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel.

Department of Computer Science, University of Oregon, Eugene, Oregon, USA.

出版信息

Med Image Comput Comput Assist Interv. 2024 Oct;15003:519-529. doi: 10.1007/978-3-031-72384-1_49. Epub 2024 Oct 3.

Abstract

Higher-order properties of functional magnetic resonance imaging (fMRI) induced connectivity have been shown to unravel many exclusive topological and dynamical insights beyond pairwise interactions. Nonetheless, whether these fMRI-induced higher-order properties play a role in disentangling other neuroimaging modalities' insights remains largely unexplored and poorly understood. In this work, by analyzing fMRI data from the Human Connectome Project Young Adult dataset using persistent homology, we discovered that the volume-optimal persistence homological scaffolds of fMRI-based functional connectomes exhibited conservative topological reconfigurations from the resting state to attentional task-positive state. Specifically, while reflecting the extent to which each cortical region contributed to functional cycles following different cognitive demands, these reconfigurations were constrained such that the spatial distribution of cavities in the connectome is relatively conserved. Most importantly, such level of contributions covaried with powers of aperiodic activities mostly within the theta-alpha (4-12 Hz) band measured by magnetoencephalography (MEG). This comprehensive result suggests that fMRI-induced hemodynamics and MEG theta-alpha aperiodic activities are governed by the same functional constraints specific to each cortical morpho-structure. Methodologically, our work paves the way toward an innovative computing paradigm in multimodal neuroimaging topological learning. The code for our analyses is provided in https://github.com/ngcaonghi/scaffold_noise.

摘要

功能磁共振成像(fMRI)诱导连通性的高阶属性已被证明能揭示许多超越成对相互作用的独特拓扑和动力学见解。尽管如此,这些fMRI诱导的高阶属性是否在解开其他神经成像模态的见解方面发挥作用,在很大程度上仍未得到探索且理解不足。在这项工作中,通过使用持久同调分析来自人类连接体项目青年成人数据集的fMRI数据,我们发现基于fMRI的功能连接体的体积最优持久同调支架在从静息状态到注意力任务积极状态时表现出保守的拓扑重构。具体而言,这些重构在反映每个皮质区域在不同认知需求下对功能循环的贡献程度的同时,受到约束使得连接体中空洞的空间分布相对保守。最重要的是,这种贡献水平与主要在脑磁图(MEG)测量的θ-α(4 - 12 Hz)频段内的非周期性活动的功率协变。这一全面结果表明,fMRI诱导的血液动力学和MEG θ-α非周期性活动受每个皮质形态结构特有的相同功能约束支配。在方法上,我们的工作为多模态神经成像拓扑学习中的创新计算范式铺平了道路。我们分析的代码可在https://github.com/ngcaonghi/scaffold_noise获取。

相似文献

1
Volume-optimal persistence homological scaffolds of hemodynamic networks covary with MEG theta-alpha aperiodic dynamics.
Med Image Comput Comput Assist Interv. 2024 Oct;15003:519-529. doi: 10.1007/978-3-031-72384-1_49. Epub 2024 Oct 3.
3
Exploring MEG brain fingerprints: Evaluation, pitfalls, and interpretations.
Neuroimage. 2021 Oct 15;240:118331. doi: 10.1016/j.neuroimage.2021.118331. Epub 2021 Jul 5.
5
Resting State Functional Connectivity MRI among Spectral MEG Current Sources in Children on the Autism Spectrum.
Front Neurosci. 2016 Jun 9;10:258. doi: 10.3389/fnins.2016.00258. eCollection 2016.
6
Examining resting-state functional connectivity in first-episode schizophrenia with 7T fMRI and MEG.
Neuroimage Clin. 2019;24:101959. doi: 10.1016/j.nicl.2019.101959. Epub 2019 Jul 23.
7
Insights into Brain Architectures from the Homological Scaffolds of Functional Connectivity Networks.
Front Syst Neurosci. 2016 Nov 8;10:85. doi: 10.3389/fnsys.2016.00085. eCollection 2016.
8
Magnetoencephalographic and functional MRI connectomics in schizophrenia via intra- and inter-network connectivity.
Neuroimage. 2017 Jan 15;145(Pt A):96-106. doi: 10.1016/j.neuroimage.2016.10.011. Epub 2016 Oct 8.
9
Resting state network connectivity is attenuated by fMRI acoustic noise.
Neuroimage. 2022 Feb 15;247:118791. doi: 10.1016/j.neuroimage.2021.118791. Epub 2021 Dec 14.
10
Multimodal description of whole brain connectivity: A comparison of resting state MEG, fMRI, and DWI.
Hum Brain Mapp. 2016 Jan;37(1):20-34. doi: 10.1002/hbm.22995. Epub 2015 Oct 27.

引用本文的文献

1
Caudal and Thalamic Segregation in White Matter Brain Network Communities in Alzheimer's Disease Population.
IEEE EMBS Int Conf Biomed Health Inform. 2024 Nov;2024. doi: 10.1109/bhi62660.2024.10913835. Epub 2025 Mar 17.

本文引用的文献

2
Decreased aperiodic neural activity in Parkinson's disease and dementia with Lewy bodies.
J Neurol. 2023 Aug;270(8):3958-3969. doi: 10.1007/s00415-023-11728-9. Epub 2023 May 3.
3
Persistent homology-based functional connectivity and its association with cognitive ability: Life-span study.
Hum Brain Mapp. 2023 Jun 15;44(9):3669-3683. doi: 10.1002/hbm.26304. Epub 2023 Apr 17.
4
Consciousness is supported by near-critical slow cortical electrodynamics.
Proc Natl Acad Sci U S A. 2022 Feb 15;119(7). doi: 10.1073/pnas.2024455119.
5
Aperiodic measures of neural excitability are associated with anticorrelated hemodynamic networks at rest: A combined EEG-fMRI study.
Neuroimage. 2021 Dec 15;245:118705. doi: 10.1016/j.neuroimage.2021.118705. Epub 2021 Nov 16.
6
A morphospace of functional configuration to assess configural breadth based on brain functional networks.
Netw Neurosci. 2021 Aug 30;5(3):666-688. doi: 10.1162/netn_a_00193. eCollection 2021.
7
Decomposing alpha and 1/f brain activities reveals their differential associations with cognitive processing speed.
Neuroimage. 2020 Jan 15;205:116304. doi: 10.1016/j.neuroimage.2019.116304. Epub 2019 Oct 22.
8
EEG power spectral slope differs by ADHD status and stimulant medication exposure in early childhood.
J Neurophysiol. 2019 Dec 1;122(6):2427-2437. doi: 10.1152/jn.00388.2019. Epub 2019 Oct 16.
9
Mapping the human brain's cortical-subcortical functional network organization.
Neuroimage. 2019 Jan 15;185:35-57. doi: 10.1016/j.neuroimage.2018.10.006. Epub 2018 Oct 3.
10
Insights into Brain Architectures from the Homological Scaffolds of Functional Connectivity Networks.
Front Syst Neurosci. 2016 Nov 8;10:85. doi: 10.3389/fnsys.2016.00085. eCollection 2016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验