Nguyen Nghi, Hou Tao, Amico Enrico, Zheng Jingyi, Huang Huajun, Kaplan Alan D, Petri Giovanni, Goñi Joaquín, Zhao Yize, Duong-Tran Duy, Shen Li
Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel.
Department of Computer Science, University of Oregon, Eugene, Oregon, USA.
Med Image Comput Comput Assist Interv. 2024 Oct;15003:519-529. doi: 10.1007/978-3-031-72384-1_49. Epub 2024 Oct 3.
Higher-order properties of functional magnetic resonance imaging (fMRI) induced connectivity have been shown to unravel many exclusive topological and dynamical insights beyond pairwise interactions. Nonetheless, whether these fMRI-induced higher-order properties play a role in disentangling other neuroimaging modalities' insights remains largely unexplored and poorly understood. In this work, by analyzing fMRI data from the Human Connectome Project Young Adult dataset using persistent homology, we discovered that the volume-optimal persistence homological scaffolds of fMRI-based functional connectomes exhibited conservative topological reconfigurations from the resting state to attentional task-positive state. Specifically, while reflecting the extent to which each cortical region contributed to functional cycles following different cognitive demands, these reconfigurations were constrained such that the spatial distribution of cavities in the connectome is relatively conserved. Most importantly, such level of contributions covaried with powers of aperiodic activities mostly within the theta-alpha (4-12 Hz) band measured by magnetoencephalography (MEG). This comprehensive result suggests that fMRI-induced hemodynamics and MEG theta-alpha aperiodic activities are governed by the same functional constraints specific to each cortical morpho-structure. Methodologically, our work paves the way toward an innovative computing paradigm in multimodal neuroimaging topological learning. The code for our analyses is provided in https://github.com/ngcaonghi/scaffold_noise.
功能磁共振成像(fMRI)诱导连通性的高阶属性已被证明能揭示许多超越成对相互作用的独特拓扑和动力学见解。尽管如此,这些fMRI诱导的高阶属性是否在解开其他神经成像模态的见解方面发挥作用,在很大程度上仍未得到探索且理解不足。在这项工作中,通过使用持久同调分析来自人类连接体项目青年成人数据集的fMRI数据,我们发现基于fMRI的功能连接体的体积最优持久同调支架在从静息状态到注意力任务积极状态时表现出保守的拓扑重构。具体而言,这些重构在反映每个皮质区域在不同认知需求下对功能循环的贡献程度的同时,受到约束使得连接体中空洞的空间分布相对保守。最重要的是,这种贡献水平与主要在脑磁图(MEG)测量的θ-α(4 - 12 Hz)频段内的非周期性活动的功率协变。这一全面结果表明,fMRI诱导的血液动力学和MEG θ-α非周期性活动受每个皮质形态结构特有的相同功能约束支配。在方法上,我们的工作为多模态神经成像拓扑学习中的创新计算范式铺平了道路。我们分析的代码可在https://github.com/ngcaonghi/scaffold_noise获取。