Suppr超能文献

剖析抑郁症的异质性:源自认知功能的数据驱动亚组

Parsing the heterogeneity of depression: a data-driven subgroup derived from cognitive function.

作者信息

Xu Chenyang, Tao Yanbao, Lin Yunhan, Zhu Jiahui, Li Zhuoran, Li Jiayi, Wang Mingqia, Huang Tao, Shi Chuan

机构信息

Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China.

The First Affiliated Hospital of Xinxiang Medical College, Xinxiang, Henan, China.

出版信息

Front Psychiatry. 2025 Jan 30;16:1537331. doi: 10.3389/fpsyt.2025.1537331. eCollection 2025.

Abstract

BACKGROUND

Increasing evidences suggests that depression is a heterogeneous clinical syndrome. Cognitive deficits in depression are associated with poor psychosocial functioning and worse response to conventional antidepressants. However, a consistent profile of neurocognitive abnormalities in depression remains unclear.

OBJECTIVE

We used data-driven parsing of cognitive performance to reveal subgroups present across depressed individuals and then investigate the change pattern of cognitive subgroups across the course in follow-up.

METHOD

We assessed cognition in 163 patients with depression using The Chinese Brief Cognitive Test(C-BCT) and the scores were compared with those of 196 healthy controls (HCs). 58 patients were reassessed after 8 weeks. We used K-means cluster analysis to identify cognitive subgroups, and compared clinical variables among these subgroups. A linear mixed-effects model, incorporating time and group (with interaction term: time × group) as fixed effects, was used to assess cognitive changes over time. Stepwise logistic regression analysis was conducted to identify risk factors associated with these subgroups.

RESULTS

Two distinct neurocognitive subgroups were identified: (1) a cognitive-impaired subgroup with global impairment across all domains assessed by the C-BCT, and (2) a cognitive-preserved subgroup, exhibited intact cognitive function, with performance well within the healthy range. The cognitive-impaired subgroup presented with more severe baseline symptoms, including depressed mood, guilt, suicidality, and poorer work performance. Significant group × time interactions were observed in the Trail Making Test Part A (TMT-A) and Continuous Performance Test (CPT), but not in Symbol Coding or Digit Span tests. Despite partial improvement in TMT-A and CPT tests, the cognitive-impaired subgroup's scores remained lower than those of the cognitive-preserved subgroup across all tests at the study endpoint. Multiple regression analysis indicated that longer illness duration, lower educational levels, and antipsychotic medication use may be risk factors for cognitive impairment.

CONCLUSION

This study identifies distinguishable cognitive subgroups in acute depression, thereby confirming the presence of cognitive heterogeneity. The cognitive-impaired subgroup exhibits distinct symptoms and persistent cognitive deficits even after treatment. Screening for cognitive dysfunction may facilitate more targeted interventions.

CLINICAL TRIAL REGISTRATION

https://www.chictr.org, identifier ChiCTR2400092796.

摘要

背景

越来越多的证据表明,抑郁症是一种异质性临床综合征。抑郁症中的认知缺陷与心理社会功能不佳以及对传统抗抑郁药的反应较差有关。然而,抑郁症中神经认知异常的一致特征仍不清楚。

目的

我们使用数据驱动的认知表现分析方法来揭示抑郁症患者中存在的亚组,然后在随访过程中研究认知亚组的变化模式。

方法

我们使用中国简易认知测试(C-BCT)对163例抑郁症患者的认知情况进行评估,并将得分与196名健康对照者(HCs)的得分进行比较。58例患者在8周后进行了重新评估。我们使用K均值聚类分析来识别认知亚组,并比较这些亚组之间的临床变量。使用一个线性混合效应模型,将时间和组(带有交互项:时间×组)作为固定效应,来评估随时间的认知变化。进行逐步逻辑回归分析以确定与这些亚组相关的危险因素。

结果

识别出两个不同的神经认知亚组:(1)一个认知受损亚组,在C-BCT评估的所有领域均存在整体损害;(2)一个认知保留亚组,表现出完整的认知功能,其表现处于健康范围内。认知受损亚组表现出更严重的基线症状,包括情绪低落、内疚、自杀观念以及较差的工作表现。在连线测验A部分(TMT-A)和持续性操作测验(CPT)中观察到显著的组×时间交互作用,但在符号编码或数字广度测验中未观察到。尽管TMT-A和CPT测试有部分改善,但在研究终点时,认知受损亚组在所有测试中的得分仍低于认知保留亚组。多元回归分析表明,病程较长、教育水平较低以及使用抗精神病药物可能是认知损害的危险因素。

结论

本研究识别出急性抑郁症中可区分的认知亚组,从而证实了认知异质性的存在。认知受损亚组即使在治疗后仍表现出明显的症状和持续的认知缺陷。筛查认知功能障碍可能有助于进行更有针对性的干预。

临床试验注册

https://www.chictr.org,标识符ChiCTR2400092796。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e88d/11821656/ae3bb9c2144b/fpsyt-16-1537331-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验