Zhou Xuanchi, Jiao Yongjie, Lu Wentian, Guo Jinjian, Yao Xiaohui, Ji Jiahui, Zhou Guowei, Ji Huihui, Yuan Zhe, Xu Xiaohong
Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan, 030031, China.
Research Institute of Materials Science of Shanxi Normal University, Collaborative Innovation Center for Advanced Permanent Magnetic Materials and Technology of Ministry of Education, Taiyuan, 030031, China.
Adv Sci (Weinh). 2025 Apr;12(14):e2414991. doi: 10.1002/advs.202414991. Epub 2025 Feb 14.
The discovery of hydrogen-associated topotactic phase modulations in correlated oxide system has emerged as a promising paradigm to explore exotic electronic states and physical functionality. Here hydrogen-induced Mott phase transitions are demonstrated for metastable VO (B) toward new electron-itinerant hydrogenated phases via introducing non-equilibrium condition, delicately delivering a rich spectrum of hydrogen-associated electronic states. Of particular interest, the highly robust but reversible hydrogenated phase achievable in metastable VO (B) significantly benefits protonic device applications, which is in contrast with well-known VO (M1), where the metallic hydrogenated phase readily turns into insulating state with extensive hydrogen doping. Establishing correlated VO at metastable status fundamentally surpasses the thermodynamic restrictions to expand the adjustability in their electronic structure, giving rise to new electronic states and a superior resistive switching of 10-10 to the counterparts in widely-reported VO (M1). Utilizing the theoretical calculations and synchrotron radiation analysis, the hydrogen-associated phase modulation in metastable VO (B) is dominantly driven by band-filling-controlled orbital reconfiguration, while the concurrent structural evolution unveils a strong ion-electron-lattice coupling. The present work provides fundamentally new tuning knob for adjusting the energy landscape of electron-correlated system, advancing the rational design of unachievable electronic states in hydrogen-related equilibrium phase diagram.
在关联氧化物体系中发现与氢相关的拓扑相变,已成为探索奇异电子态和物理功能的一种有前景的范例。在此,通过引入非平衡条件,展示了亚稳VO(B)向新的电子巡游氢化相的氢诱导莫特相变,巧妙地呈现了丰富的与氢相关的电子态谱。特别值得关注的是,在亚稳VO(B)中可实现的高度稳健但可逆的氢化相,对质子器件应用极为有利,这与著名的VO(M1)形成对比,在VO(M1)中,金属氢化相在大量氢掺杂时容易转变为绝缘态。在亚稳状态下建立关联VO从根本上超越了热力学限制,以扩大其电子结构的可调节性,从而产生新的电子态,并实现了比广泛报道的VO(M1)中的对应物高出10-10的优异电阻开关。利用理论计算和同步辐射分析,亚稳VO(B)中与氢相关的相变主要由能带填充控制的轨道重构驱动,同时并发的结构演化揭示了强烈的离子-电子-晶格耦合。本工作为调节电子关联体系的能量格局提供了全新的调控旋钮,推动了在氢相关平衡相图中难以实现的电子态的合理设计。