Di Buduo Christian A, Careddu Francesca, Metti Samuele, Lunghi Marco, Diprima Santo, Camilotto Virginia, Bruni Giovanna, Gianelli Umberto, Tosi Delfina, Perotti Cesare, Del Fante Claudia, Cazzola Mario, Braghetta Paola, Kaplan David L, Minetti Giampaolo, Malcovati Luca, Balduini Alessandra
Department of Molecular Medicine, University of Pavia, Pavia, Italy.
Department of Molecular Medicine, University of Padova, Padova, Italy.
Blood Adv. 2025 May 13;9(9):2192-2206. doi: 10.1182/bloodadvances.2024014905.
The pursuit of ex vivo erythrocyte generation has led to the development of various culture systems that simulate the bone marrow microenvironment. However, these models often fail to fully replicate the hematopoietic niche's complex dynamics. In our research, we use a comprehensive strategy that emphasizes physiological red blood cell (RBC) differentiation using a minimal cytokine regimen. A key innovation in our approach is the integration of a 3-dimensional (3D) silk-based scaffold engineered to mimic both the physical and chemical properties of human bone marrow. This scaffold facilitates critical macrophage-RBC interactions and incorporates fibronectin functionalization to support the formation of erythroblastic island (EBI)-like niches. We observed diverse stages of erythroblast maturation within these niches, driven by the activation of autophagy, which promotes organelle clearance and membrane remodeling. This process leads to reduced surface integrin expression and significantly enhances RBC enucleation. Using a specialized bioreactor chamber, millions of RBCs can be detached from the EBIs and collected in transfusion bags via dynamic perfusion. Inhibition of autophagy through pharmacological agents or α4 integrin blockade disrupted EBI formation, preventing cells from completing their final morphological transformations, having them trapped in the erythroblast stage. Our findings underscore the importance of the bone marrow niche in maintaining the structural integrity of EBIs and highlight the critical role of autophagy in facilitating organelle clearance during RBC maturation. RNA sequencing analysis further confirmed that these processes are uniquely supported by the 3D silk scaffold, which is essential for enhancing RBC production ex vivo.
对体外红细胞生成的追求促使了各种模拟骨髓微环境的培养系统的发展。然而,这些模型往往无法完全复制造血微环境的复杂动态。在我们的研究中,我们采用了一种综合策略,即使用最少的细胞因子方案来强调生理性红细胞(RBC)分化。我们方法的一个关键创新是整合了一种基于三维(3D)丝绸的支架,该支架经过工程设计以模拟人类骨髓的物理和化学特性。这种支架促进了关键的巨噬细胞 - RBC相互作用,并结合了纤连蛋白功能化以支持类成红细胞岛(EBI)样微环境的形成。我们在这些微环境中观察到了成红细胞成熟的不同阶段,这是由自噬的激活驱动的,自噬促进细胞器清除和膜重塑。这个过程导致表面整合素表达减少,并显著增强RBC去核。使用专门的生物反应器腔室,数百万个RBC可以从EBIs中分离出来,并通过动态灌注收集到输血袋中。通过药物或α4整合素阻断抑制自噬会破坏EBI的形成,阻止细胞完成其最后的形态转变,使它们被困在成红细胞阶段。我们的研究结果强调了骨髓微环境在维持EBIs结构完整性方面的重要性,并突出了自噬在促进RBC成熟过程中细胞器清除方面的关键作用。RNA测序分析进一步证实,这些过程由3D丝绸支架独特支持,这对于增强体外RBC生成至关重要。