Smith Jared B, Hong Sean S, Murphy Damian J, Dangcil Evelynne, Nacipucha Jacqueline, Tucker Aaron, Carayannopoulos Nicolas L, Beshy Mina, Chandrasekar Shrivaishnavi, Peci Eran, Kiel Matthew Y, Wackym P Ashley, Yao Justin D, Mowery Todd M
Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037.
Department of Otolaryngology - Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey 08854.
eNeuro. 2025 Mar 14;12(3). doi: 10.1523/ENEURO.0246-24.2025. Print 2025 Mar.
The striatum is the primary input nucleus of the basal ganglia, integrating a dense plexus of inputs from the cerebral cortex and thalamus to regulate action selection and learning. Neuroanatomical mapping of the striatum and its subcompartments has been carried out extensively in rats and mice, nonhuman primates, and cats allowing comparative neuroanatomy studies to derive heuristics about striatal composition and function. Here, we systematically map corticostriatal topography from motor, somatosensory, auditory, and visual cortices as well as thalamostriatal parafascicular (PfN) inputs in the Mongolian gerbil. We also map a pathway reported in mice from medial vestibular nucleus to the PfN that could convey vestibular information to the striatum. Our findings align with those of similar studies in other rodents, indicating homologous neuroanatomical connectivity patterns within the corticostriatal projectome across Rodentia. We observed corticostriatal peaks of dense labeling for each input with a diffuse projection throughout striatal subregions from each cortical region, suggesting a global integration of all cortical information by the striatum. Thalamostriatal projections from PfN covered most of the striatum with a peak of PfN-specific compartmentalized labeling similar to other sensory and motor systems. We also confirm the connection from the medial vestibular nucleus to PfN thalamus, indicating that vestibular information may be widely integrated throughout the striatum. The findings build upon our body of knowledge on striatal connectivity across mammalian species and provide a foundation for striatal research focusing on vestibulothalamostriatal circuits in Rodentia.
纹状体是基底神经节的主要输入核,整合来自大脑皮层和丘脑的密集输入神经丛,以调节动作选择和学习。在大鼠、小鼠、非人灵长类动物和猫中,已经广泛开展了纹状体及其亚区的神经解剖学图谱绘制工作,这使得比较神经解剖学研究能够得出关于纹状体组成和功能的启发式结论。在此,我们系统地绘制了蒙古沙鼠运动、躯体感觉、听觉和视觉皮层的皮质纹状体拓扑结构,以及丘脑纹状体束旁核(PfN)的输入。我们还绘制了一条在小鼠中报道的从前庭内侧核到PfN的通路,该通路可能将前庭信息传递到纹状体。我们的研究结果与其他啮齿动物的类似研究结果一致,表明啮齿目动物皮质纹状体投射组内存在同源的神经解剖连接模式。我们观察到每个输入的皮质纹状体密集标记峰值,且每个皮质区域的标记在整个纹状体亚区域呈弥散投射,这表明纹状体对所有皮质信息进行全局整合。来自PfN的丘脑纹状体投射覆盖了大部分纹状体,PfN特异性分区标记的峰值与其他感觉和运动系统相似。我们还证实了前庭内侧核与PfN丘脑之间的连接,这表明前庭信息可能在整个纹状体中广泛整合。这些发现建立在我们对跨哺乳动物物种的纹状体连接的认识基础上,并为专注于啮齿目动物前庭丘脑纹状体回路的纹状体研究提供了基础。