Suppr超能文献

整合OCO - 3、GOSAT、CAMS数据,采用经验正交函数(EOF)和深度学习方法,以0.1°×0.1°空间分辨率计算的全球每日柱平均一氧化碳含量

Global Daily Column Average CO at 0.1° × 0.1° Spatial Resolution Integrating OCO-3, GOSAT, CAMS with EOF and Deep Learning.

作者信息

Antezana Lopez Franz Pablo, Zhou Guanhua, Jing Guifei, Zhang Kai, Chen Liangfu, Chen Lin, Tan Yumin

机构信息

School of Instrumentation Science and Optoelectronic Engineering, Beihang University, Beijing, 100191, China.

Hangzhou International Innovation Institute, Beihang University, Hangzhou, 311115, China.

出版信息

Sci Data. 2025 Feb 14;12(1):268. doi: 10.1038/s41597-024-04135-w.

Abstract

Accurate global carbon dioxide (CO) distribution with high spatial and temporal resolution is essential for understanding its dynamics and impacts on climate change. This study tackles the challenge of data gaps in satellite observations of greenhouse gases, caused by orbital and observational limitations. We reconstructed a comprehensive dataset of Column-averaged CO2 (XCO) concentrations by integrating re-analyzed data from the Copernicus Atmosphere Monitoring Service (CAMS) with observations from GOSAT and OCO-3 satellites. Using two advanced data reconstruction methods-Data Interpolating Empirical Orthogonal Functions (DINEOF) and Convolutional Auto-Encoder (DINCAE)-we imputed missing data, preserving spatial and temporal consistency. The combined approach achieved high accuracy, with Pearson correlation values between 0.94 and 0.95 against TCCON measurements, and we also reported root mean square error (RMSE) to assess model performance further. Our results indicate that these techniques generate a daily, high-resolution, gap-free XCO dataset, enabling improved CO monitoring, climate modeling, and policy development.

摘要

准确获取具有高空间和时间分辨率的全球二氧化碳(CO₂)分布对于理解其动态变化以及对气候变化的影响至关重要。本研究应对了由于轨道和观测限制导致的温室气体卫星观测数据缺口这一挑战。我们通过将哥白尼大气监测服务(CAMS)的再分析数据与GOSAT和OCO - 3卫星的观测数据相结合,重建了一个综合的柱平均二氧化碳(XCO₂)浓度数据集。使用两种先进的数据重建方法——数据插值经验正交函数(DINEOF)和卷积自动编码器(DINCAE),我们对缺失数据进行了插补,保持了空间和时间的一致性。这种组合方法实现了高精度,与TCCON测量值之间的皮尔逊相关值在0.94至0.95之间,并且我们还报告了均方根误差(RMSE)以进一步评估模型性能。我们的结果表明,这些技术生成了一个每日的、高分辨率的、无缺口的XCO₂数据集,有助于改进CO₂监测、气候建模和政策制定。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验