Echeveste Medrano Maider J, Smith Garrett J, Sánchez-Andrea Irene, Jetten Mike S M, Welte Cornelia U
Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands.
Department of Microbiology, Ohio State University, Columbus, USA.
Environ Microbiol. 2025 Feb;27(2):e70056. doi: 10.1111/1462-2920.70056.
Coastal ecosystems are increasingly exposed to high nutrient loads and salinity intrusions due to rising seawater levels. Microbial communities, key drivers of elemental cycles in these ecosystems, consequently, experience fluctuations. This study investigates how the methane-rich coastal sediment microbiome from the Stockholm Archipelago copes with high and low nitrogen and sulfide loading by simulating coastal conditions in two methane-saturated anoxic brackish bioreactors. Over a year, the bioreactors were subjected to the same ratio of nitrate, ammonium and sulfide (2:1:1) under eutrophic or oligotrophic conditions and monitored using 16S rRNA gene amplicon and metagenomic sequencing. Sulfide was depleted in both conditions. Sulfide-dependent denitrification was the predominant process in eutrophic conditions, whereas dissimilatory nitrate reduction to ammonium dominated under oligotrophic conditions. Methane oxidation was driven by Methylobacter and Methylomonas in eutrophic conditions, whereas a more diverse methane-oxidising microbial community developed under oligotrophic conditions, which likely competed for nitrate with anaerobic methanotrophic archaea and the gammaproteobacterial MBAE14. Novel putative copper-dependent membrane-bound monooxygenases (Cu-MMOs) were identified in MBAE14 and co-enriched Rugosibacter genomes, suggesting the need for further physiological and genetic characterisation. This study highlights the importance of understanding coastal anoxic microbiomes under fluctuating conditions, revealing complex interactions and novel pathways crucial for ecosystem functioning.
由于海平面上升,沿海生态系统越来越多地受到高营养负荷和盐度入侵的影响。因此,作为这些生态系统中元素循环的关键驱动因素,微生物群落也经历了波动。本研究通过在两个甲烷饱和的缺氧微咸水生物反应器中模拟沿海条件,研究了来自斯德哥尔摩群岛富含甲烷的沿海沉积物微生物群如何应对高氮和低氮以及硫化物负荷。在一年多的时间里,生物反应器在富营养或贫营养条件下接受相同比例的硝酸盐、铵和硫化物(2:1:1),并使用16S rRNA基因扩增子和宏基因组测序进行监测。在两种条件下硫化物均被消耗。在富营养条件下,依赖硫化物的反硝化是主要过程,而在贫营养条件下,异化硝酸盐还原为铵占主导地位。在富营养条件下,甲烷氧化由甲基杆菌和甲基单胞菌驱动,而在贫营养条件下形成了更多样化的甲烷氧化微生物群落,它们可能与厌氧甲烷氧化古菌和γ-变形菌MBAE14竞争硝酸盐。在MBAE14和共富集的鲁氏菌基因组中鉴定出了新的假定的铜依赖性膜结合单加氧酶(Cu-MMOs),这表明需要进一步进行生理和遗传表征。本研究强调了了解波动条件下沿海缺氧微生物群的重要性,揭示了对生态系统功能至关重要的复杂相互作用和新途径。