Cabrera Maia, Armando Romina, Czarnowski Ian, Chinestrad Patricio, Blanco Ramiro, Zinni Alejandra, Gómez Daniel, Mengual Gómez Diego L, Menna Pablo Lorenzano
Laboratorio de Farmacología Molecular, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Argentina.
Unidad de Oncología Molecular, Centro de Oncología Molecular y Traslacional, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Argentina.
Heliyon. 2025 Jan 24;11(3):e42238. doi: 10.1016/j.heliyon.2025.e42238. eCollection 2025 Feb 15.
Pyruvate kinase isoform M2 (PKM2) is a multifunctional enzyme capable of transitioning between monomeric, dimeric, and tetrameric states, with its oligomeric equilibrium playing a pivotal role in tumour progression and survival. The unique exon ten at the dimer-dimer interface represents an attractive target for isoform-specific modulation, offering opportunities for disrupting this equilibrium and altering tumour cell dynamics. This study identifies a novel druggable pocket at the PKM2 dimer interface through conformational analysis. This pocket was exploited in a virtual screening of a large small-molecule library, identifying two promising candidates, C599 and C998. Both compounds exhibited dose-dependent antiproliferative effects in glioblastoma cell lines and induced apoptosis, as evidenced by caspase 3/7 activation. These effects were directly linked to their inhibition of PKM2 enzymatic activity, validating the proposed mechanism of action in their rational design. ADMET studies further highlighted their strong potential as lead PKM2 inhibitors for GBM treatment. Molecular dynamics (MD) simulations and post-MD analyses, including Dynamic Cross-Correlation Maps (DCCM), Probability Density Function (PDF), and Free Energy Landscape (FEL), confirmed the stability of the protein-ligand interactions and highlighted critical residues at the dimer-dimer interface. The Steered MD simulations demonstrated the high affinity of the compounds for PKM2, as evidenced by the requirement of high rupture forces to induce an unbinding event. These results highlight the potential of the compounds as oligomeric modulators of PKM2. These findings position C599 and C998 as promising lead compounds for antitumor applications. Future studies will focus on optimising these candidates and assessing their efficacy glioblastoma models, reassuring the thoroughness of our research and the potential for further advancements.
丙酮酸激酶同工酶M2(PKM2)是一种多功能酶,能够在单体、二聚体和四聚体状态之间转换,其寡聚体平衡在肿瘤进展和存活中起着关键作用。二聚体-二聚体界面处独特的外显子十代表了一个有吸引力的异构体特异性调节靶点,为破坏这种平衡和改变肿瘤细胞动力学提供了机会。本研究通过构象分析在PKM2二聚体界面鉴定出一个新的可成药口袋。在对一个大型小分子文库的虚拟筛选中利用了这个口袋,鉴定出两个有前景的候选物C599和C998。两种化合物在胶质母细胞瘤细胞系中均表现出剂量依赖性的抗增殖作用并诱导凋亡,这通过半胱天冬酶3/7的激活得到证实。这些作用与其对PKM2酶活性的抑制直接相关,验证了其合理设计中的拟作用机制。ADMET研究进一步突出了它们作为胶质母细胞瘤治疗的主要PKM2抑制剂的强大潜力。分子动力学(MD)模拟和MD后分析,包括动态交叉相关图谱(DCCM)、概率密度函数(PDF)和自由能景观(FEL),证实了蛋白质-配体相互作用的稳定性,并突出了二聚体-二聚体界面处的关键残基。引导MD模拟证明了化合物对PKM2的高亲和力,这通过诱导解离事件所需的高破裂力得以证明。这些结果突出了这些化合物作为PKM2寡聚体调节剂的潜力。这些发现将C599和C998定位为有前景的抗肿瘤应用先导化合物。未来的研究将集中于优化这些候选物并评估它们在胶质母细胞瘤模型中的疗效,确保我们研究的全面性和进一步进展的潜力。