Wang Ping, Ahmed Mahmoud Salama, Nguyen Ngoc Uyen Nhi, Menendez-Montes Ivan, Hsu Ching-Cheng, Farag Ayman B, Thet Suwannee, Lam Nicholas T, Wansapura Janaka P, Crossley Eric, Ma Ning, Zhao Shane Rui, Zhang Tiejun, Morimoto Sachio, Singh Rohit, Elhelaly Waleed, Tassin Tara C, Cardoso Alisson C, Williams Noelle S, Pointer Hayley L, Elliott David A, McNamara James W, Watt Kevin I, Porrello Enzo R, Sadayappan Sakthivel, Sadek Hesham A
Division of Cardiology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.
Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, Texas, USA.
J Clin Invest. 2025 Feb 17;135(4):e174081. doi: 10.1172/JCI174081.
Dilated cardiomyopathy (DCM) due to genetic disorders results in decreased myocardial contractility, leading to high morbidity and mortality rates. There are several therapeutic challenges in treating DCM, including poor understanding of the underlying mechanism of impaired myocardial contractility and the difficulty of developing targeted therapies to reverse mutation-specific pathologies. In this report, we focused on K210del, a DCM-causing mutation, due to 3-nucleotide deletion of sarcomeric troponin T (TnnT), resulting in loss of Lysine210. We resolved the crystal structure of the troponin complex carrying the K210del mutation. K210del induced an allosteric shift in the troponin complex resulting in distortion of activation Ca2+-binding domain of troponin C (TnnC) at S69, resulting in calcium discoordination. Next, we adopted a structure-based drug repurposing approach to identify bisphosphonate risedronate as a potential structural corrector for the mutant troponin complex. Cocrystallization of risedronate with the mutant troponin complex restored the normal configuration of S69 and calcium coordination. Risedronate normalized force generation in K210del patient-induced pluripotent stem cell-derived (iPSC-derived) cardiomyocytes and improved calcium sensitivity in skinned papillary muscles isolated from K210del mice. Systemic administration of risedronate to K210del mice normalized left ventricular ejection fraction. Collectively, these results identify the structural basis for decreased calcium sensitivity in K210del and highlight structural and phenotypic correction as a potential therapeutic strategy in genetic cardiomyopathies.
由遗传疾病引起的扩张型心肌病(DCM)会导致心肌收缩力下降,从而导致高发病率和死亡率。治疗DCM存在若干治疗挑战,包括对心肌收缩力受损的潜在机制了解不足,以及开发靶向疗法以逆转特定突变病理的困难。在本报告中,我们聚焦于K210del,这是一种导致DCM的突变,由于肌节肌钙蛋白T(TnnT)的3个核苷酸缺失,导致赖氨酸210缺失。我们解析了携带K210del突变的肌钙蛋白复合物的晶体结构。K210del诱导了肌钙蛋白复合物的变构转变,导致肌钙蛋白C(TnnC)在S69处的激活钙结合域扭曲,从而导致钙失调。接下来,我们采用基于结构的药物重新利用方法,确定双膦酸盐利塞膦酸钠为突变肌钙蛋白复合物的潜在结构校正剂。利塞膦酸钠与突变肌钙蛋白复合物的共结晶恢复了S69的正常构型和钙配位。利塞膦酸钠使K210del患者诱导多能干细胞衍生(iPSC衍生)心肌细胞中的力产生正常化,并提高了从K210del小鼠分离的去表皮乳头肌中的钙敏感性。对K210del小鼠全身给药利塞膦酸钠可使左心室射血分数正常化。总体而言,这些结果确定了K210del中钙敏感性降低的结构基础,并突出了结构和表型校正作为遗传性心肌病的潜在治疗策略。