Suppr超能文献

纳米机械谐振器的比较分析:光热传感中的灵敏度、响应时间及实际考量

Comparative analysis of nanomechanical resonators: sensitivity, response time, and practical considerations in photothermal sensing.

作者信息

Kanellopulos Kostas, Ladinig Friedrich, Emminger Stefan, Martini Paolo, West Robert G, Schmid Silvan

机构信息

Institute of Sensor and Actuator Systems, TU Wien, Gusshausstrasse 27-29, Vienna, 1040, Austria.

出版信息

Microsyst Nanoeng. 2025 Feb 18;11(1):28. doi: 10.1038/s41378-025-00879-6.

Abstract

Nanomechanical photothermal sensing has significantly advanced single-molecule/particle microscopy and spectroscopy, and infrared detection. In this approach, the nanomechanical resonator detects shifts in resonant frequency due to photothermal heating. However, the relationship between photothermal sensitivity, response time, and resonator design has not been fully explored. This paper compares three resonator types - strings, drumheads, and trampolines - to explore this relationship. Through theoretical modeling, experimental validation, and finite element method simulations, we find that strings offer the highest sensitivity (with a noise equivalent power of 280 fW/Hz for strings made of silicon nitride), while drumheads exhibit the fastest thermal response. The study reveals that photothermal sensitivity correlates with the average temperature rise and not the peak temperature. Finally, the impact of photothermal back-action is discussed, which can be a major source of frequency instability. This work clarifies the performance differences and limits among resonator designs and guides the development of advanced nanomechanical photothermal sensors, benefiting a wide range of applications.

摘要

纳米机械光热传感在单分子/颗粒显微镜、光谱学以及红外检测方面取得了显著进展。在这种方法中,纳米机械谐振器检测由于光热加热引起的谐振频率变化。然而,光热灵敏度、响应时间和谐振器设计之间的关系尚未得到充分探索。本文比较了三种谐振器类型——弦、鼓膜和蹦床——以探究这种关系。通过理论建模、实验验证和有限元方法模拟,我们发现弦具有最高的灵敏度(对于由氮化硅制成的弦,噪声等效功率为280 fW/Hz),而鼓膜表现出最快的热响应。该研究表明,光热灵敏度与平均温度升高相关,而非峰值温度。最后,讨论了光热反作用的影响,它可能是频率不稳定的主要来源。这项工作阐明了谐振器设计之间的性能差异和局限性,并指导先进纳米机械光热传感器的开发,有益于广泛的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cb9/11836225/e8a6d3a41097/41378_2025_879_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验