Suppr超能文献

用于一维血流建模的物理约束耦合神经微分方程

Physics-constrained coupled neural differential equations for one dimensional blood flow modeling.

作者信息

Csala Hunor, Mohan Arvind, Livescu Daniel, Arzani Amirhossein

机构信息

Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, USA; Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA.

Computational Physics and Methods, Los Alamos National Laboratory, Los Alamos, NM, USA.

出版信息

Comput Biol Med. 2025 Mar;186:109644. doi: 10.1016/j.compbiomed.2024.109644. Epub 2025 Jan 6.

Abstract

BACKGROUND

Computational cardiovascular flow modeling plays a crucial role in understanding blood flow dynamics. While 3D models provide acute details, they are computationally expensive, especially with fluid-structure interaction (FSI) simulations. 1D models offer a computationally efficient alternative, by simplifying the 3D Navier-Stokes equations through axisymmetric flow assumption and cross-sectional averaging. However, traditional 1D models based on finite element methods (FEM) often lack accuracy compared to 3D averaged solutions.

METHODS

This study introduces a novel physics-constrained machine learning technique that enhances the accuracy of 1D cardiovascular flow models while maintaining computational efficiency. Our approach, utilizing a physics-constrained coupled neural differential equation (PCNDE) framework, demonstrates superior performance compared to conventional FEM-based 1D models across a wide range of inlet boundary condition waveforms and stenosis blockage ratios. A key innovation lies in the spatial formulation of the momentum conservation equation, departing from the traditional temporal approach and capitalizing on the inherent temporal periodicity of blood flow.

RESULTS

This spatial neural differential equation formulation switches space and time and overcomes issues related to coupling stability and smoothness, while simplifying boundary condition implementation. The model accurately captures flow rate, area, and pressure variations for unseen waveforms and geometries, having 3-5 times smaller error than 1D FEM, and less than 1.2% relative error compared to 3D averaged training data. We evaluate the model's robustness to input noise and explore the loss landscapes associated with the inclusion of different physics terms.

CONCLUSION

This advanced 1D modeling technique offers promising potential for rapid cardiovascular simulations, achieving computational efficiency and accuracy. By combining the strengths of physics-based and data-driven modeling, this approach enables fast and accurate cardiovascular simulations.

摘要

背景

计算心血管流动模型在理解血流动力学方面起着至关重要的作用。虽然三维模型能提供精确的细节,但计算成本高昂,尤其是在进行流固耦合(FSI)模拟时。一维模型通过轴对称流动假设和横截面平均简化三维纳维 - 斯托克斯方程,提供了一种计算效率高的替代方案。然而,与三维平均解相比,基于有限元方法(FEM)的传统一维模型往往缺乏准确性。

方法

本研究引入了一种新颖的物理约束机器学习技术,该技术在保持计算效率的同时提高了一维心血管流动模型的准确性。我们的方法利用物理约束耦合神经微分方程(PCNDE)框架,在广泛的入口边界条件波形和狭窄阻塞率范围内,与传统的基于有限元方法的一维模型相比,展现出卓越的性能。一个关键创新在于动量守恒方程的空间公式化,它摒弃了传统的时间方法,利用了血流固有的时间周期性。

结果

这种空间神经微分方程公式化切换了空间和时间,克服了与耦合稳定性和平滑性相关的问题,同时简化了边界条件的实现。该模型能准确捕捉未见过的波形和几何形状的流速、面积和压力变化,误差比一维有限元方法小3至5倍,与三维平均训练数据相比相对误差小于1.2%。我们评估了模型对输入噪声的鲁棒性,并探索了与包含不同物理项相关的损失景观。

结论

这种先进的一维建模技术为快速心血管模拟提供了有前景的潜力,实现了计算效率和准确性。通过结合基于物理和数据驱动建模的优势,这种方法能够实现快速且准确的心血管模拟。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验