Suppr超能文献

基于人工智能的脑机接口,使用单通道脑电图的稳态视觉诱发电位信号。

Artificial intelligence based BCI using SSVEP signals with single channel EEG.

作者信息

Kanagaluru Venkatesh, M Sasikala

机构信息

Department of Electronics and Communication Engineering, Sri Venkateswara College of Engineering, Pennalur, Sriperumbudur, Tamil Nadu, India.

Department of Electronics and Communication Engineering, CEG Campus, Anna University, Chennai, Tamil Nadu, India.

出版信息

Technol Health Care. 2025 Feb 5:9287329241302740. doi: 10.1177/09287329241302740.

Abstract

BACKGROUND

Brain-Computer Interfaces (BCIs) enable direct communication between the brain and external devices. Steady-state visual-evoked potentials (SSVEPs) are particularly useful in BCIs because of their rapid communication capabilities and minimal calibration requirements. Although SSVEP-based BCIs are highly effective, traditional classification methods face challenges in maintaining high accuracy with minimal EEG channels, especially in real-world applications. There is a growing need for improved classification techniques to enhance performance and efficiency.

OBJECTIVE

The aim of this research is to improve the classification of SSVEP signals using machine-learning algorithms. This involves extracting dominant frequency features from SSVEP data and applying classifiers such as Decision Tree (DT), Linear Discriminant Analysis (LDA), and Support Vector Machine (SVM) to achieve high accuracy while reducing the number of EEG channels required, making the method practical for BCI applications.

METHODS

SSVEP data were collected from the Benchmark Dataset at Tsinghua BCI Lab using 64 EEG channels per subject. The Oz channel was selected as the dominant channel for analysis. Wavelet decomposition (db4) was used to extract frequency features in the range 7.8 Hz to 15.6 Hz. The frequency of the maximum amplitude within a 5-s window was extracted as the key feature, and machine learning models (DT, LDA, and SVM) were applied to classify these features.

RESULTS

The proposed method achieved a high classification accuracy, with 95.8% for DT and 96.7% for both LDA and SVM. These results show significant improvement over existing methods, indicating the potential of this approach for BCI applications.

CONCLUSION

This study demonstrates that SSVEP classification using machine-learning models improves accuracy and efficiency. The use of wavelet decomposition for feature extraction and machine learning for classification offers a robust method for SSVEP-based BCIs. This method is promising for assistive technologies and other BCI applications.

摘要

背景

脑机接口(BCIs)实现了大脑与外部设备之间的直接通信。稳态视觉诱发电位(SSVEPs)在脑机接口中特别有用,因为它们具有快速通信能力且校准要求极低。尽管基于SSVEP的脑机接口非常有效,但传统分类方法在使用最少的脑电图通道维持高精度方面面临挑战,尤其是在实际应用中。对改进分类技术以提高性能和效率的需求日益增长。

目的

本研究的目的是使用机器学习算法改进SSVEP信号的分类。这包括从SSVEP数据中提取主导频率特征,并应用决策树(DT)、线性判别分析(LDA)和支持向量机(SVM)等分类器,以在减少所需脑电图通道数量的同时实现高精度,使该方法适用于脑机接口应用。

方法

使用清华大学脑机接口实验室的基准数据集,每位受试者通过64个脑电图通道收集SSVEP数据。选择Oz通道作为主要分析通道。使用小波分解(db4)提取7.8赫兹至15.6赫兹范围内的频率特征。提取5秒窗口内最大振幅的频率作为关键特征,并应用机器学习模型(DT、LDA和SVM)对这些特征进行分类。

结果

所提出的方法实现了高分类准确率,DT为95.8%,LDA和SVM均为96.7%。这些结果表明与现有方法相比有显著改进表明该方法在脑机接口应用中的潜力。

结论

本研究表明,使用机器学习模型进行SSVEP分类可提高准确性和效率。使用小波分解进行特征提取和机器学习进行分类为基于SSVEP的脑机接口提供了一种强大的方法。该方法在辅助技术和其他脑机接口应用中很有前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验