Suppr超能文献

甲型流感病毒NS1中支持变构上位性的动态网络的进化重排。

Evolutionary rewiring of the dynamic network underpinning allosteric epistasis in NS1 of the influenza A virus.

作者信息

Gonzales James E, Kim Iktae, Bastiray Abhishek, Hwang Wonmuk, Cho Jae-Hyun

机构信息

Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843.

Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892.

出版信息

Proc Natl Acad Sci U S A. 2025 Feb 25;122(8):e2410813122. doi: 10.1073/pnas.2410813122. Epub 2025 Feb 20.

Abstract

Viral proteins frequently mutate to evade host innate immune responses, yet the impact of these mutations on the molecular energy landscape remains unclear. Epistasis, the intramolecular communications between mutations, often renders the combined mutational effects unpredictable. Nonstructural protein 1 (NS1) is a major virulence factor of the influenza A virus (IAV) that activates host PI3K by binding to its p85β subunit. Here, we present a deep analysis of the impact of evolutionary mutations in NS1 that emerged between the 1918 pandemic IAV strain and its descendant PR8 strain. Our analysis reveals how the mutations rewired interresidue communications, which underlie long-range allosteric and epistatic networks in NS1. Our findings show that PR8 NS1 binds to p85β with approximately 10-fold greater affinity than 1918 NS1 due to allosteric mutational effects, which are further tuned by epistasis. NMR chemical shift perturbation and methyl-axis order parameter analyses revealed that the mutations induced long-range structural and dynamic changes in PR8 NS1, relative to 1918 NS1, enhancing its affinity to p85β. Complementary molecular dynamics simulations and graph theory-based network analysis for conformational dynamics on the submicrosecond timescales uncover how these mutations rewire the dynamic network, which underlies the allosteric epistasis. Significantly, we find that conformational dynamics of residues with high betweenness centrality play a crucial role in communications between network communities and are highly conserved across influenza A virus evolution. These findings advance our mechanistic understanding of the allosteric and epistatic communications between distant residues and provide insight into their role in the molecular evolution of NS1.

摘要

病毒蛋白经常发生突变以逃避宿主的固有免疫反应,然而这些突变对分子能量景观的影响仍不清楚。上位性,即突变之间的分子内通讯,常常使组合突变效应不可预测。非结构蛋白1(NS1)是甲型流感病毒(IAV)的主要毒力因子,它通过与p85β亚基结合来激活宿主PI3K。在此,我们对1918年大流行的IAV毒株与其后代PR8毒株之间出现的NS1进化突变的影响进行了深入分析。我们的分析揭示了这些突变如何重新连接残基间通讯,而残基间通讯是NS1中远程别构和上位性网络的基础。我们的研究结果表明,由于别构突变效应,PR8 NS1与p85β的结合亲和力比1918 NS1高约10倍,而上位性进一步调节了这种效应。核磁共振化学位移扰动和甲基轴序参数分析表明,相对于1918 NS1,这些突变在PR8 NS1中诱导了远程结构和动态变化,增强了其与p85β的亲和力。亚微秒时间尺度上基于构象动力学的互补分子动力学模拟和基于图论的网络分析揭示了这些突变如何重新连接动态网络,而动态网络是别构上位性的基础。值得注意的是,我们发现具有高中介中心性的残基的构象动力学在网络群落之间的通讯中起关键作用,并且在甲型流感病毒进化过程中高度保守。这些发现推进了我们对远距离残基之间别构和上位性通讯机制的理解,并为它们在NS1分子进化中的作用提供了见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验