Arce Pedro, Archer Jay W, Arsini Lorenzo, Bagulya Alexander, Bolst David, Brown Jeremy M C, Caccia Barbara, Chacon Andrew, Cirrone Giuseppe Antonio Pablo, Cortés-Giraldo Miguel Antonio, Cutajar Dean, Cuttone Giacomo, Dondero Paolo, Dotti Andrea, Faddegon Bruce, Fattori Serena, Fedon Christian, Guatelli Susanna, Haga Akihiro, Incerti Sebastien, Ivanchenko Vladimir, Konstantinov Dmitri, Kyriakou Ioanna, Le Albert, Li Zhuxin, Maire Michel, Malaroda Alessandra, Mancini-Terracciano Carlo, Mantero Alfonso, Michelet Claire, Milluzzo Giuliana, Nicolanti Francesca, Novak Mihaly, Omachi Chihiro, Pandola Luciano, Pensavalle Jake Harold, Perales Álvaro, Perrot Yann, Petringa Giada, Pozzi Silvia, Quesada José Manuel, Ramos-Méndez José, Romano Francesco, Rosenfeld Anatoly B, Safavi-Naeini Mitra, Sakata Dousatsu, Sarmiento Luis G, Sasaki Takashi, Sato Yoshihide, Sciuto Alberto, Sechopoulos Ioannis, Simpson Edward C, Stanzani Ronny, Tomal Alessandra, Toshito Toshiyuki, Tran Hoang Ngoc, White Christopher, Wright Dennis H
CIEMAT, Madrid, Spain.
Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales, Australia.
Med Phys. 2025 May;52(5):2707-2761. doi: 10.1002/mp.17678. Epub 2025 Feb 21.
Geant4, a Monte Carlo Simulation Toolkit extensively used in bio-medical physics, is in continuous evolution to include newest research findings to improve its accuracy and to respond to the evolving needs of a very diverse user community. In 2014, the G4-Med benchmarking system was born from the effort of the Geant4 Medical Simulation Benchmarking Group, to benchmark and monitor the evolution of Geant4 for medical physics applications. The G4-Med system was first described in our Medical Physics Special Report published in 2021. Results of the tests were reported for Geant4 10.5.
In this work, we describe the evolution of the G4-Med benchmarking system.
The G4-Med benchmarking suite currently includes 23 tests, which benchmark Geant4 from the calculation of basic physical quantities to the simulation of more clinically relevant set-ups. New tests concern the benchmarking of Geant4-DNA physics and chemistry components for regression testing purposes, dosimetry for brachytherapy with a source, dosimetry for external x-ray and electron FLASH radiotherapy, experimental microdosimetry for proton therapy, and in vivo PET for carbon and oxygen beams. Regression testing has been performed between Geant4 10.5 and 11.1. Finally, a simple Geant4 simulation has been developed and used to compare Geant4 EM physics constructors and physics lists in terms of execution times.
In summary, our EM tests show that the parameters of the multiple scattering in the Geant4 EM constructor G4EmStandardPhysics_option3 in Geant4 11.1, while improving the modeling of the electron backscattering in high atomic number targets, are not adequate for dosimetry for clinical x-ray and electron beams. Therefore, these parameters have been reverted back to those of Geant4 10.5 in Geant4 11.2.1. The x-ray radiotherapy test shows significant differences in the modeling of the bremsstrahlung process, especially between G4EmPenelopePhysics and the other constructors under study (G4EmLivermorePhysics, G4EmStandardPhysics_option3, and G4EmStandardPhysics_option4). These differences will be studied in an in-depth investigation within our Group. Improvement in Geant4 11.1 has been observed for the modeling of the proton and carbon ion Bragg peak with energies of clinical interest, thanks to the adoption of ICRU90 to calculate the low energy proton stopping powers in water and of the Linhard-Sorensen ion model, available in Geant4 since version 11.0. Nuclear fragmentation tests of interest for carbon ion therapy show differences between Geant4 10.5 and 11.1 in terms of fragment yields. In particular, a higher production of boron fragments is observed with Geant4 11.1, leading to a better agreement with reference data for this fragment.
Based on the overall results of our tests, we recommend to use G4EmStandardPhysics_option4 as EM constructor and QGSP_BIC_HP with G4EmStandardPhysics_option4, for hadrontherapy applications. The Geant4-DNA physics lists report differences in modeling electron interactions in water, however, the tests have a pure regression testing purpose so no recommendation can be formulated.
Geant4是一款在生物医学物理领域广泛应用的蒙特卡洛模拟工具包,它不断发展以纳入最新研究成果,从而提高其准确性,并满足多样化用户群体不断变化的需求。2014年,G4-Med基准测试系统由Geant4医学模拟基准测试小组努力创建,用于对Geant4在医学物理应用方面的性能进行基准测试和监测其发展。G4-Med系统首次在我们2021年发表的医学物理专题报告中进行了描述。报告了针对Geant4 10.5的测试结果。
在这项工作中,我们描述了G4-Med基准测试系统的发展情况。
G4-Med基准测试套件目前包括23项测试,这些测试对Geant4从基本物理量的计算到更具临床相关性设置的模拟进行基准测试。新的测试涉及用于回归测试目的的Geant4-DNA物理和化学组件的基准测试、近距离放射治疗源的剂量测定、外部X射线和电子FLASH放射治疗的剂量测定、质子治疗的实验微剂量测定以及碳和氧束的体内PET。在Geant4 10.5和11.1之间进行了回归测试。最后,开发了一个简单的Geant4模拟,并用于比较Geant4电磁物理构造函数和物理列表的执行时间。
总之,我们的电磁测试表明,Geant4 11.1中Geant4电磁构造函数G4EmStandardPhysics_option3的多次散射参数,虽然改善了高原子序数靶中电子背散射的建模,但对于临床X射线和电子束的剂量测定并不适用。因此,在Geant4 11.2.1中,这些参数已恢复为Geant4 10.5的参数。X射线放射治疗测试表明,在轫致辐射过程的建模中存在显著差异,特别是在G4EmPenelopePhysics与其他正在研究的构造函数(G4EmLivermorePhysics、G4EmStandardPhysics_option3和G4EmStandardPhysics_option4)之间。这些差异将在我们小组内进行深入研究。由于采用了ICRU90来计算水中低能质子的阻止本领以及自Geant4 11.0版本起可用的Linhard-Sorensen离子模型,在Geant4 11.1中观察到了对具有临床相关能量的质子和碳离子布拉格峰建模的改进。碳离子治疗感兴趣的核碎裂测试表明,Geant4 10.5和11.1在碎片产率方面存在差异。特别是,在Geant4 11.1中观察到硼碎片的产量更高,从而与该碎片的参考数据达成了更好的一致。
基于我们测试的总体结果,我们建议在强子治疗应用中使用G4EmStandardPhysics_option4作为电磁构造函数,并将QGSP_BIC_HP与G4EmStandardPhysics_option4一起使用。Geant4-DNA物理列表报告了在水中电子相互作用建模方面的差异,然而,这些测试仅用于纯回归测试目的,因此无法给出建议。