Suppr超能文献

使用人口稳定性指数评估大型医学数据的代表性。

Assessing the representativeness of large medical data using population stability index.

作者信息

Lu Sheng-Chieh, Song Wenye, Pfob Andre, Gibbons Chris

机构信息

Department of Symptom Research, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA.

National Center for Tumor Diseases (NCT)and, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany.

出版信息

BMC Med Res Methodol. 2025 Feb 21;25(1):44. doi: 10.1186/s12874-025-02474-9.

Abstract

BACKGROUND

Understanding sample representativeness is key to interpreting findings from epidemiological research and applying these findings to broader populations. Though techniques for assessing sample representativeness are available, they rely on access to raw data detailing the population of interest which are often not readily available and may not be suitable for comparing large datasets. In reality, population-based data are often only available in an aggregated format. In this study, we aimed to examine the capability of population stability index (PSI), a popular metric to assess data drift for artificial intelligence studies, in detecting sample differences using population-based data.

METHOD

We obtained United States cancer statistics from the National Cancer Institute's Surveillance, Epidemiology, and End Results (SEER) database. We queried the SEER 17-registry research database to obtain cancer count data by age, sex, and cancer site groups from the rate sessions of the SEER*State incidence database for 2000 and 2015 - 2020. We then calculated PSI scores to estimate yearly data distribution shift from 2015 to 2020 for each variable. We compared the PSI results to the Chi-Square and Cramér's V tests for the same comparisons.

RESULTS

Scores for PSI comparing age, sex, and cancer site distribution between years ranged widely from 2.96 to less than 0.01. In line with our expectations, we found moderate to substantial differences in cancer population characteristics between 2000 and all other included years using PSI. Despite small effect sizes (Cramér's V 0.01 - 0.09), Chi-Square tests were significant for most comparisons, indicating likely type-I error caused by our large sample.

CONCLUSIONS

Population stability index can be used to examine sample differences in healthcare studies where only binned data are available or where large datasets may reduce the reliability of other metrics. Inclusion of PSI in epidemiological research will give greater confidence that results are representative of the general population.

摘要

背景

理解样本代表性是解释流行病学研究结果并将这些结果应用于更广泛人群的关键。尽管有评估样本代表性的技术,但它们依赖于获取详细说明目标人群的原始数据,而这些数据往往不易获得,并且可能不适用于比较大型数据集。实际上,基于人群的数据通常仅以汇总形式提供。在本研究中,我们旨在检验人群稳定性指数(PSI)(一种用于评估人工智能研究中数据漂移的常用指标)在使用基于人群的数据检测样本差异方面的能力。

方法

我们从美国国家癌症研究所的监测、流行病学和最终结果(SEER)数据库中获取了美国癌症统计数据。我们查询了SEER 17登记处研究数据库,以从2000年以及2015 - 2020年SEER*州发病率数据库的比率数据集中获取按年龄、性别和癌症部位分组的癌症计数数据。然后,我们计算PSI分数以估计2015年至2020年每个变量的年度数据分布变化。我们将PSI结果与相同比较的卡方检验和克莱默V检验结果进行了比较。

结果

比较各年份年龄、性别和癌症部位分布的PSI分数范围广泛,从2.96到小于0.01。与我们的预期一致,我们发现使用PSI时,2000年与所有其他纳入年份之间癌症人群特征存在中度到显著差异。尽管效应量较小(克莱默V值为0.01 - 0.09),但大多数比较的卡方检验结果显著,表明可能是由于我们的大样本导致了I型错误。

结论

人群稳定性指数可用于在仅有分组数据可用或大型数据集可能降低其他指标可靠性的医疗保健研究中检验样本差异。在流行病学研究中纳入PSI将使人们更有信心认为研究结果代表了一般人群。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e44/11844046/61480e89a5be/12874_2025_2474_Fig1_HTML.jpg

相似文献

1
Assessing the representativeness of large medical data using population stability index.
BMC Med Res Methodol. 2025 Feb 21;25(1):44. doi: 10.1186/s12874-025-02474-9.
6
Comparison of Comorbid Medical Conditions in the National Cancer Database and the SEER-Medicare Database.
Ann Surg Oncol. 2016 Dec;23(13):4139-4148. doi: 10.1245/s10434-016-5508-5. Epub 2016 Aug 17.

本文引用的文献

1
Assessing real-world representativeness of prospective registry cohorts in oncology: insights from patients with esophagogastric cancer.
J Clin Epidemiol. 2023 Dec;164:65-75. doi: 10.1016/j.jclinepi.2023.10.009. Epub 2023 Oct 21.
2
Longitudinal assessment of demographic representativeness in the Medical Imaging and Data Resource Center open data commons.
J Med Imaging (Bellingham). 2023 Nov;10(6):61105. doi: 10.1117/1.JMI.10.6.061105. Epub 2023 Jul 18.
3
On the importance of interpretable machine learning predictions to inform clinical decision making in oncology.
Front Oncol. 2023 Feb 28;13:1129380. doi: 10.3389/fonc.2023.1129380. eCollection 2023.
4
An overview of real-world data sources for oncology and considerations for research.
CA Cancer J Clin. 2022 May;72(3):287-300. doi: 10.3322/caac.21714. Epub 2021 Dec 29.
6
40 Years of Change in Age- and Stage-Specific Cancer Incidence Rates in US Women and Men.
JNCI Cancer Spectr. 2019 Jun 10;3(3):pkz038. doi: 10.1093/jncics/pkz038. eCollection 2019 Sep.
7
Alternatives to P value: confidence interval and effect size.
Korean J Anesthesiol. 2016 Dec;69(6):555-562. doi: 10.4097/kjae.2016.69.6.555. Epub 2016 Oct 25.
8
Commentary: Should we always deliberately be non-representative?
Int J Epidemiol. 2013 Aug;42(4):1022-6. doi: 10.1093/ije/dyt105.
10
Why representativeness should be avoided.
Int J Epidemiol. 2013 Aug;42(4):1012-4. doi: 10.1093/ije/dys223.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验