Reithe Haakon, Marty Brice, Torrado Juan C, Førsund Elise, Husebo Bettina S, Erdal Ane, Kverneng Simon U, Sheard Erika, Tzoulis Charalampos, Patrascu Monica
Centre for Elderly and Nursing Home Medicine, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.
Neuro-SysMed Center, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.
Biomed Eng Online. 2025 Feb 21;24(1):22. doi: 10.1186/s12938-025-01353-0.
Established assessment scales used for Parkinson's disease (PD) have several limitations in tracking symptom progression and fluctuation. Both research and commercial-grade wearables show potential in improving these assessments. However, it is not known whether pervasive and affordable devices can deliver reliable data, suitable for designing open-source unobtrusive around-the-clock assessments. Our aim is to investigate the usefulness of the research-grade wristband Empatica E4, commercial-grade smartwatch Fitbit Sense, and the Oura ring, for PD research.
The study included participants with PD (N = 15) and neurologically healthy controls (N = 16). Data were collected using established assessment scales (Movement Disorders Society Unified Parkinson's Disease Rating Scale, Montreal Cognitive Assessment, REM Sleep Behavior Disorder Screening Questionnaire, Hoehn and Yahr Stage), self-reported diary (activities, symptoms, sleep, medication times), and 2-week digital data from the three devices collected simultaneously. The analyses comprised three steps: preparation (device characteristics assessment, data extraction and preprocessing), processing (data structuring and visualization, cross-correlation analysis, diary comparison, uptime calculation), and evaluation (usability, availability, statistical analyses).
We found large variation in data characteristics and unsatisfactory cross-correlation. Due to output incongruences, only heart rate and movement could be assessed across devices. Empatica E4 and Fitbit Sense outperformed Oura in reflecting self-reported activities. Results show a weak output correlation and significant differences. The uptime was good, but Oura did not record heart rate and movement concomitantly. We also found variation in terms of access to raw data, sampling rate and level of device-native processing, ease of use, retrieval of data, and design. We graded the system usability of Fitbit Sense as good, Empatica E4 as poor, with Oura in the middle.
In this study we identified a set of characteristics necessary for PD research: ease of handling, cleaning, data retrieval, access to raw data, score calculation transparency, long battery life, sufficient storage, higher sampling frequencies, software and hardware reliability, transparency. The three analyzed devices are not interchangeable and, based on data features, none were deemed optimal for PD research, but they all have the potential to provide suitable specifications in future iterations.
用于帕金森病(PD)的既定评估量表在追踪症状进展和波动方面存在若干局限性。研究级和商业级可穿戴设备在改善这些评估方面均显示出潜力。然而,尚不清楚普及且价格亲民的设备能否提供可靠数据,以用于设计开源的、不引人注意的全天候评估。我们的目的是研究研究级腕带Empatica E4、商业级智能手表Fitbit Sense和Oura戒指在PD研究中的有用性。
该研究纳入了PD患者(N = 15)和神经功能正常的对照者(N = 16)。使用既定评估量表(运动障碍协会统一帕金森病评定量表、蒙特利尔认知评估量表、快速眼动睡眠行为障碍筛查问卷、霍恩和雅尔分期)、自我报告日记(活动、症状、睡眠、用药时间)以及同时从这三款设备收集的为期2周的数字数据来收集数据。分析包括三个步骤:准备(设备特性评估、数据提取和预处理)、处理(数据结构化和可视化、互相关分析、日记比较、正常运行时间计算)以及评估(可用性、可获取性、统计分析)。
我们发现数据特征存在很大差异,且互相关情况不尽人意。由于输出不一致,仅心率和运动可在各设备间进行评估。在反映自我报告的活动方面,Empatica E4和Fitbit Sense优于Oura。结果显示输出相关性较弱且存在显著差异。正常运行时间良好,但Oura未同时记录心率和运动。我们还在原始数据获取、采样率和设备原生处理水平、易用性、数据检索以及设计方面发现了差异。我们将Fitbit Sense的系统可用性评为良好,Empatica E4评为较差,Oura处于中间水平。
在本研究中,我们确定了PD研究所需的一组特性:易于操作、清理、数据检索、原始数据获取、评分计算透明度、长电池续航、充足存储、更高采样频率、软硬件可靠性、透明度。所分析的三款设备不可互换,基于数据特征,没有一款被认为是PD研究的最佳选择,但它们都有潜力在未来迭代中提供合适的规格。