Suppr超能文献

心电图驱动的人工智能模型:预测射血分数降低的心力衰竭患者一年死亡率的新方法。

Electrocardiographic-Driven artificial intelligence Model: A new approach to predicting One-Year mortality in heart failure with reduced ejection fraction patients.

作者信息

Lee Hak Seung, Han Ga In, Kim Kyung-Hee, Kang Sora, Jang Jong-Hwan, Jo Yong-Yeon, Son Jeong Min, Lee Min Sung, Kwon Joon-Myoung, Oh Byung-Hee

机构信息

Artificial Intelligence and Big Data Research Center, Sejong Medical Research Institute, Bucheon, South Korea; Medical AI Co., Ltd. Seoul, South Korea.

Division of Cardiology, Department of Internal Medicine, Incheon Sejong Hospital, Cardiovascular Center, Incheon, South Korea.

出版信息

Int J Med Inform. 2025 May;197:105843. doi: 10.1016/j.ijmedinf.2025.105843. Epub 2025 Feb 19.

Abstract

BACKGROUND

Despite the proliferation of heart failure (HF) mortality prediction models, their practical utility is limited. Addressing this, we utilized a significant dataset to develop and validate a deep learning artificial intelligence (AI) model for predicting one-year mortality in heart failure with reduced ejection fraction (HFrEF) patients. The study's focus was to assess the effectiveness of an AI algorithm, trained on an extensive collection of ECG data, in predicting one-year mortality in HFrEF patients.

METHODS

We selected HFrEF patients who had high-quality baseline ECGs from two hospital visits between September 2016 and May 2021. A total of 3,894 HFrEF patients (64% male, mean age 64.3, mean ejection fraction 29.8%) were included. Using this ECG data, we developed a deep learning model and evaluated its performance using the area under the receiver operating characteristic curve (AUROC).

RESULTS

The model, validated against 16,228 independent ECGs from the original cohort, achieved an AUROC of 0.826 (95 % CI, 0.794-0.859). It displayed a high sensitivity of 99.0 %, positive predictive value of 16.6 %, and negative predictive value of 98.4 %. Importantly, the deep learning algorithm emerged as an independent predictor of 1-yr mortality of HFrEF patients with an adjusted hazards ratio of 4.12 (95 % CI 2.32-7.33, p < 0.001).

CONCLUSIONS

The depth and quality of our dataset and our AI-driven ECG analysis model significantly enhance the prediction of one-year mortality in HFrEF patients. This promises a more personalized, future-focused approach in HF patient management.

摘要

背景

尽管心力衰竭(HF)死亡率预测模型不断涌现,但其实际效用有限。为解决这一问题,我们利用一个大型数据集开发并验证了一种深度学习人工智能(AI)模型,用于预测射血分数降低的心力衰竭(HFrEF)患者的一年死亡率。该研究的重点是评估一种基于大量心电图数据训练的AI算法在预测HFrEF患者一年死亡率方面的有效性。

方法

我们选择了在2016年9月至2021年5月期间两次医院就诊时拥有高质量基线心电图的HFrEF患者。共纳入3894例HFrEF患者(男性占64%,平均年龄64.3岁,平均射血分数29.8%)。利用这些心电图数据,我们开发了一个深度学习模型,并使用受试者操作特征曲线下面积(AUROC)评估其性能。

结果

该模型在来自原始队列的16228份独立心电图上进行验证,AUROC为0.826(95%CI,0.794 - 0.859)。它显示出99.0%的高敏感性、16.6%的阳性预测值和98.4%的阴性预测值。重要的是,深度学习算法成为HFrEF患者1年死亡率的独立预测因子,调整后的风险比为4.12(95%CI 2.32 - 7.33,p < 0.001)。

结论

我们数据集的深度和质量以及我们的AI驱动的心电图分析模型显著提高了HFrEF患者一年死亡率的预测能力。这有望为HF患者管理带来一种更个性化、以未来为导向的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验