Garrido-Hernandez Guillermo, Ytre-Hauge Kristian Smeland, Winter René M, Danielsen Signe, Alsaker Mirjam K D, Redalen Kathrine Røe, Henjum Helge
Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway.
Department of Physics and Technology, University of Bergen, Bergen, Norway.
Int J Radiat Oncol Biol Phys. 2025 Aug 1;122(5):1369-1379. doi: 10.1016/j.ijrobp.2025.02.015. Epub 2025 Feb 22.
The outcome of proton therapy for head and neck cancer (HNC) varies considerably. We investigated the feasibility of adapting proton therapy plans based on F-fluorodeoxyglucose-positron emission tomography-defined biologic tumor volumes (BTVs) reflecting remaining aggressive tumor subvolumes 2 weeks into treatment (interim). Recognizing the potential to improve proton therapy response with increasing linear energy transfer (LET), we simulated a combined dose-LET escalation to the BTVs and compared it to pure dose escalation. In addition, the impact of relative biological effectiveness (RBE) was evaluated by comparing the constant RBE of 1.1 (RBE) with a variable-RBE model.
A semiautomated method was used to segment the BTV from F-fluorodeoxyglucose-positron emission tomography-defined for 9 patients with HNC, assuming high standardized uptake value at interim to reflect tumor radioresistance. An in-house Monte Carlo-based recalculation and reoptimization tool simulated proton therapy plans with both constant RBE and variable-RBE, aimed to deliver 68 Gy (RBE) to high-risk target volumes, 10% dose escalation to the BTV, and a LET boost to the BTV. Dose distributions were prioritized over LET optimization goals. Results were quantified by dose and LET distributions to target volumes and organs at risk, as well as normal tissue complication probabilities (NTCPs) for xerostomia and dysphagia.
Dose-LET adapted proton therapy plans achieved 10% dose escalation and mean dose-averaged LET (LET) increases to the BTV above 1.0 keV/μm, with no significant LET increases to organs at risk. NTCP for xerostomia and dysphagia from dose-LET and dose-only escalation were similar. However, NTCPs increased 6% to 10% when variable-RBE was used instead of the constant RBE.
Our in silico study showed that dose-LET escalation in proton therapy integrating a variable-RBE model may improve proton therapy for patients with HNC. Clinical evaluation of such a biological image-based dose-LET escalation in proton therapy of HNC remains to be investigated.
头颈部癌(HNC)质子治疗的结果差异很大。我们研究了根据氟脱氧葡萄糖正电子发射断层扫描定义的生物肿瘤体积(BTV)调整质子治疗计划的可行性,该生物肿瘤体积反映了治疗2周时(中期)残留的侵袭性肿瘤亚体积。认识到随着线性能量传递(LET)增加改善质子治疗反应的潜力,我们模拟了对BTV的联合剂量-LET递增,并将其与单纯剂量递增进行比较。此外,通过将恒定相对生物效应(RBE)1.1(RBE)与可变RBE模型进行比较,评估了RBE的影响。
采用半自动方法从氟脱氧葡萄糖正电子发射断层扫描定义的BTV中分割出9例HNC患者的BTV,假设中期标准化摄取值高以反映肿瘤放射抗性。基于内部蒙特卡罗的重新计算和重新优化工具模拟了具有恒定RBE和可变RBE的质子治疗计划,目标是向高危靶体积给予68 Gy(RBE),向BTV剂量递增10%,并对BTV进行LET增强。剂量分布优先于LET优化目标。通过靶体积和危及器官的剂量和LET分布以及口干和吞咽困难的正常组织并发症概率(NTCP)对结果进行量化。
剂量-LET适应的质子治疗计划实现了10%的剂量递增,并且BTV的平均剂量平均LET(LET)增加到1.0 keV/μm以上,危及器官的LET没有显著增加。剂量-LET和仅剂量递增导致的口干和吞咽困难的NTCP相似。然而,当使用可变RBE代替恒定RBE时,NTCP增加了6%至10%。
我们的计算机模拟研究表明,在质子治疗中结合可变RBE模型进行剂量-LET递增可能改善HNC患者的质子治疗。这种基于生物图像的剂量-LET递增在HNC质子治疗中的临床评估仍有待研究。