Oehr Peter
Faculty of Medicine, University of Bonn, 53113 Bonn, Germany.
Diagnostics (Basel). 2025 Feb 7;15(4):410. doi: 10.3390/diagnostics15040410.
This work introduces accuracy- and precision-ROC curves in addition to SS- and PV-ROC curves and shows a novel means of profiling biomarker characteristics for validation of optimal cutoffs in clinical diagnostics and decision making. This investigation included 91 patients with a confirmed bladder cancer diagnosis and 1152 patients without evidence of cancer. The study performed a quantitative investigation of used-up test cassettes from the visual UBC Rapid qualitative point-of-care assay, which had already been applied in routine diagnostics. Using a photometric reader, quantitative data could also be obtained from the test line of the used cassettes. The ROC curves were constructed using different thresholds or cutoff levels to determine the TP/TN and FP/FN values for each threshold at concentrations of 5, 10, 30, 50, 90, 110, 250 and 300 µg/L. The resulting TP/TN and FP/FN values were used to calculate the sensitivity/specificity, accuracy, precision and predictive values in order to plot the ROC curves with integrated cutoff value distributions and their index cutoff diagrams. A common, optimal cutoff value for all the diagnostic parameters was derived with the aid of an ROC index cutoff diagram. It includes higher specificity and an acceptable number of NPVs. As a result, use of a sensitivity-specificity ROC curve and the Youden index only permits the selection of a maximal threshold value or cutoff point for the biomarker of interest but disregards the clinical status of the patient, whereas the precision, accuracy and predictive values give information related to the disease. This work's novelty compared to the existing methodology includes the first international publication of accuracy- and precision-ROC curves. It enables the investigation of the relationship among the sensitivity, specificity, precision, accuracy and predictive values at varied cutoff levels within a bioassay, presenting these in a single graph consisting of selected receiver operating characteristic (ROC) curves for each parameter, including cutoff distribution curves. This is a transparent method to identify appropriate cutoffs for multiple diagnostic parameters. According to the results, the single-sided use of a sensitivity-specificity ROC curve including the maximal Youden index value as an optimal cutoff or single-point determinations for predictive values cannot provide diagnostic information of the same quality as that given by a multi-parameter diagnostic profile and a multi-parameter cutoff-index-diagram-derived optimal value as presented within this work. The proposed multi-parameter cutoff-index diagram includes novel index cutoff AOX. It is a new different method that allows a quantitative comparison of the results from multi-parameter ROC curves, which cannot be performed with the AUC. However, the methods are different and do not exclude each other.
除了SS-ROC曲线和PV-ROC曲线外,这项工作还引入了准确度-ROC曲线和精密度-ROC曲线,并展示了一种分析生物标志物特征的新方法,用于验证临床诊断和决策中的最佳临界值。这项研究纳入了91例确诊为膀胱癌的患者和1152例无癌症证据的患者。该研究对已应用于常规诊断的视觉UBC快速定性即时检测中使用过的检测试剂盒进行了定量研究。使用光度计读数器,还可以从用过的试剂盒的检测线获得定量数据。通过使用不同的阈值或临界水平构建ROC曲线,以确定浓度为5、10、30、50、90、110、250和300μg/L时每个阈值的真阳性/真阴性以及假阳性/假阴性值。所得的真阳性/真阴性以及假阳性/假阴性值用于计算灵敏度/特异性、准确度、精密度和预测值,以便绘制具有综合临界值分布及其指数临界值图的ROC曲线。借助ROC指数临界值图得出了所有诊断参数的一个通用的最佳临界值。它具有更高的特异性和可接受数量的阴性预测值。因此,仅使用灵敏度-特异性ROC曲线和尤登指数只能选择感兴趣生物标志物的最大阈值或临界点,却忽略了患者的临床状况,而精密度、准确度和预测值则提供了与疾病相关的信息。与现有方法相比,这项工作的新颖之处包括首次在国际上发表准确度-ROC曲线和精密度-ROC曲线。它能够研究生物测定中不同临界水平下灵敏度、特异性、精密度、准确度和预测值之间的关系,并将这些关系呈现在由每个参数的选定接收者操作特征(ROC)曲线组成的单个图表中,包括临界值分布曲线。这是一种确定多个诊断参数合适临界值的透明方法。根据结果,仅使用包含最大尤登指数值作为最佳临界值的灵敏度-特异性ROC曲线或对预测值进行单点测定,无法提供与本研究中呈现的多参数诊断概况和多参数临界值-指数图得出的最佳值所提供的同等质量的诊断信息。所提出的多参数临界值-指数图包括新颖的指数临界值AOX。这是一种新方法,允许对多参数ROC曲线的结果进行定量比较,而这是用AUC无法做到的。然而,这些方法不同且并不相互排斥。