Suppr超能文献

具有稳态可塑性的威尔逊-考恩网络中抑制稳定振荡的控制

Control of Inhibition-Stabilized Oscillations in Wilson-Cowan Networks with Homeostatic Plasticity.

作者信息

Godin Camille, Krause Matthew R, Vieira Pedro G, Pack Christopher C, Thivierge Jean-Philippe

机构信息

School of Psychology, University of Ottawa, 156 Jean-Jacques Lussier, Ottawa, ON K1N 6N5, Canada.

Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada.

出版信息

Entropy (Basel). 2025 Feb 19;27(2):215. doi: 10.3390/e27020215.

Abstract

Interactions between excitatory and inhibitory neurons in the cerebral cortex give rise to different regimes of activity and modulate brain oscillations. A prominent regime in the cortex is the inhibition-stabilized network (ISN), defined by strong recurrent excitation balanced by inhibition. While theoretical models have captured the response of brain circuits in the ISN state, their connectivity is typically hard-wired, leaving unanswered how a network may self-organize to an ISN state and dynamically switch between ISN and non-ISN states to modulate oscillations. Here, we introduce a mean-rate model of coupled Wilson-Cowan equations, link ISN and non-ISN states to Kolmogorov-Sinai entropy, and demonstrate how homeostatic plasticity (HP) allows the network to express both states depending on its level of tonic activity. This mechanism enables the model to capture a broad range of experimental effects, including (i) a paradoxical decrease in inhibitory activity, (ii) a phase offset between excitation and inhibition, and (iii) damped gamma oscillations. Further, the model accounts for experimental work on asynchronous quenching, where an external input suppresses intrinsic oscillations. Together, findings show that oscillatory activity is modulated by the dynamical regime of the network under the control of HP, thus advancing a framework that bridges neural dynamics, entropy, oscillations, and synaptic plasticity.

摘要

大脑皮层中兴奋性神经元和抑制性神经元之间的相互作用产生了不同的活动模式,并调节脑振荡。皮层中一种突出的模式是抑制稳定网络(ISN),其定义为通过抑制实现平衡的强递归兴奋。虽然理论模型已经捕捉到了ISN状态下脑回路的反应,但其连接通常是硬连线的,这使得一个网络如何自组织到ISN状态以及如何在ISN和非ISN状态之间动态切换以调节振荡的问题仍未得到解答。在这里,我们引入了一个耦合威尔逊-考恩方程的平均速率模型,将ISN和非ISN状态与柯尔莫哥洛夫-西奈熵联系起来,并证明了稳态可塑性(HP)如何使网络根据其紧张活动水平表达这两种状态。这种机制使模型能够捕捉广泛的实验效应,包括(i)抑制性活动的反常减少,(ii)兴奋与抑制之间的相位偏移,以及(iii)阻尼伽马振荡。此外,该模型解释了关于异步猝灭的实验工作,即外部输入抑制内在振荡。总之,研究结果表明,振荡活动在HP的控制下由网络的动态模式调节,从而推进了一个连接神经动力学、熵、振荡和突触可塑性的框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/692a/11854103/1cf74d43e08c/entropy-27-00215-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验