Junio Raí Felipe Pereira, de Cêa Bernardo Soares Avila, Silva Douglas Santos, Júnior Édio Pereira Lima, Monteiro Sergio Neves, Nascimento Lucio Fabio Cassiano
Military Institute of Engineering-IME, Department of Materials Science, Praça General Tibúrcio, 80, Praia Vermelha, Urca, Rio de Janeiro CEP 22290-270, Brazil.
Polymers (Basel). 2025 Feb 19;17(4):534. doi: 10.3390/polym17040534.
The development of efficient and sustainable armor systems is crucial for protecting bodies and vehicles. In this study, epoxy composites reinforced with natural lignocellulosic fibers (NLFs) from carnauba () were produced with 0, 10, 20, 30, and 40% fiber volume fractions. Their ballistic performance was evaluated by measuring residual velocity and absorbed energy after impact with 7.62 mm ammunition, as well as their application in a multilayer armor system (MAS). Scanning electron microscopy (SEM) was used to analyze fracture regions, and explicit dynamic simulations were performed for comparison with experimental tests. Residual velocity tests indicated a limit velocity (V) between 213 and 233 m/s and absorbed energy (E) between 221 and 264 J, surpassing values reported for aramid fabric. All formulations showed indentation depths below the National Institute of Justice (NIJ) limit, with the 40% fiber sample achieving the lowest depth (31.2 mm). The simulation results correlated well with the experimental data, providing insight into deformation mechanisms during a level III ballistic event. These findings demonstrate the high potential of carnauba fibers in epoxy-based polymer composites, particularly as an intermediate layer in MAS, offering a sustainable alternative for ballistic protection.
开发高效且可持续的装甲系统对于保护人员和车辆至关重要。在本研究中,制备了以巴西棕榈蜡天然木质纤维素纤维(NLFs)增强的环氧树脂复合材料,其纤维体积分数分别为0%、10%、20%、30%和40%。通过测量7.62毫米弹药撞击后的残余速度和吸收能量,以及它们在多层装甲系统(MAS)中的应用,对其弹道性能进行了评估。使用扫描电子显微镜(SEM)分析断裂区域,并进行显式动态模拟以与实验测试进行比较。残余速度测试表明极限速度(V)在213至233米/秒之间,吸收能量(E)在221至264焦耳之间,超过了芳纶织物报告的值。所有配方的压痕深度均低于美国国家司法研究所(NIJ)的限值,其中40%纤维样品的深度最低(31.2毫米)。模拟结果与实验数据相关性良好,为III级弹道事件中的变形机制提供了见解。这些发现证明了巴西棕榈蜡纤维在环氧基聚合物复合材料中的巨大潜力,特别是作为MAS中的中间层,为弹道防护提供了一种可持续的替代方案。