Yue Haiwang, Wang Yanbing, Chen Zhaoyang, Zhu Jiashuai, Behera Partha Pratim, Liu Pengcheng, Yang Haoxiang, Wei Jianwei, Bu Junzhou, Jiang Xuwen, Ma Wujun
Hebei Provincial Key Laboratory of Crops Drought Resistance Research, Dryland Farming Institute, Hebei Academy of Agriculture and Forestry Sciences, Hengshui, China.
Institute of Cereal and Oil Crops of Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China.
Front Plant Sci. 2025 Feb 11;16:1538661. doi: 10.3389/fpls.2025.1538661. eCollection 2025.
Winter wheat is a crucial crop extensively cultivated in northern China, where its grain yield is influenced by genetic factors (G), environmental conditions (E), and their interactions (GEI). Accurate yield estimation depends on understanding the patterns of GEI in multi-environment trials (METs).
From 2014 to 2018, continuous experiments were conducted in the Heilonggang region of the North China Plain (NCP), evaluating 71 winter wheat genotypes across 16 locations over five years. Leveraging 30 years of environmental data, including 19 meteorological parameters and 6 soil physicochemical properties, the study analyzed GEI and identified four distinct mega-environments (MEs) using advanced environmental classification techniques.
Variance analysis of genotype-year combinations at individual locations revealed significant differences among genotypes. Furthermore, the joint analysis showed that GEI variance exceeded the variance attributed to genotypic effects alone. The Additive Main Effects and Multiplicative Interaction (AMMI) model indicates that the first three interaction principal component axes (IPCAs) account for over 70% of the GEI variance, thereby demonstrating the relevance of this model to the current study. Principal Component Analysis (PCA) across the five-year study period revealed positive correlations between grain yield and vapor pressure deficit (VPD), evapotranspiration potential (ETP), temperature range (TRANGE), available soil water (ASKSW), and sunshine duration. Conversely, negative correlations were observed with relative humidity at 2 meters (RH2M), total precipitation (PRECTOT), potential evapotranspiration (PETP), and dew point temperature at 2 meters (T2MDEW). Among the meteorological and soil variables, minimum temperature (TMIN), fruiting rate (FRUE), temperature at 2 meters (T2M), and clay content (CLAY) emerged as the most significant contributors to yield variation during the study period. Based on GGE biplot analysis, superior genotypes were identified for their respective regions: JM196, WN4176, and HN6119 in 2014; ZX4899, H9966, and LM22 in 2015; BM7, KN8162, and KM3 in 2016; HH14-4019, HM15-1, and HH1603 in 2017; and S14-6111 and JM5172 in 2018. Feixiang and Shenzhou were identified as the most discriminative and representative locations.
These findings provide a scientific basis for optimizing winter wheat cultivation strategies in northern regions. Based on long-term data from the North China Plain, future work can further validate their applicability in other regions.
冬小麦是中国北方广泛种植的重要作物,其籽粒产量受遗传因素(G)、环境条件(E)及其互作(GEI)的影响。准确的产量估计依赖于了解多环境试验(METs)中GEI的模式。
2014年至2018年,在中国华北平原(NCP)的黑龙港地区进行了连续试验,在五年内对71个冬小麦基因型在16个地点进行了评估。利用30年的环境数据,包括19个气象参数和6个土壤理化性质,该研究分析了GEI,并使用先进的环境分类技术确定了四个不同的 mega-环境(MEs)。
在各个地点对基因型-年份组合的方差分析显示基因型间存在显著差异。此外,联合分析表明GEI方差超过了仅归因于基因型效应的方差。加性主效应和乘性互作(AMMI)模型表明,前三个互作主成分轴(IPCA)占GEI方差的70%以上,从而证明了该模型与当前研究的相关性。在五年研究期内的主成分分析(PCA)显示,籽粒产量与水汽压差(VPD)、潜在蒸散量(ETP)、温度范围(TRANGE)、土壤有效水分(ASKSW)和日照时长呈正相关。相反,与2米高度处的相对湿度(RH2M)、总降水量(PRECTOT)、潜在蒸散量(PETP)和2米高度处的露点温度(T2MDEW)呈负相关。在气象和土壤变量中,最低温度(TMIN)、结实率(FRUE)、2米高度处的温度(T2M)和粘粒含量(CLAY)是研究期间产量变异的最重要贡献因素。基于GGE双标图分析,确定了各地区的优良基因型:2014年为JM196、WN4176和HN6119;2015年为ZX4899、H9966和LM22;2016年为BM7、KN8162和KM3;2017年为HH14 - 4019、HM15 - 1和HH1603;2018年为S14 - 6111和JM5172。肥乡和深州被确定为最具区分性和代表性的地点。
这些发现为优化北方地区冬小麦种植策略提供了科学依据。基于华北平原的长期数据,未来的工作可以进一步验证其在其他地区的适用性。