Yuan Yuan, Ahn Euijoon, Feng Dagan, Khadra Mohamed, Kim Jinman
School of Computer Science, Faculty of Engineering, The University of Sydney, Sydney, 2006, NSW, Australia.
College of Science and Engineering, James Cook University, Cairns, 4870, QLD, Australia.
Comput Med Imaging Graph. 2025 Jun;122:102510. doi: 10.1016/j.compmedimag.2025.102510. Epub 2025 Feb 15.
Bi-parametric magnetic resonance imaging (bpMRI) has become a pivotal modality in the detection and diagnosis of clinically significant prostate cancer (csPCa). Developing AI-based systems to identify csPCa using bpMRI can transform prostate cancer (PCa) management by improving efficiency and cost-effectiveness. However, current state-of-the-art methods using convolutional neural networks (CNNs) and Transformers are limited in learning in-plane and three-dimensional spatial information from anisotropic bpMRI. Their performances also depend on the availability of large, diverse, and well-annotated bpMRI datasets. To address these challenges, we propose the Zonal-aware Self-supervised Mesh Network (Z-SSMNet), which adaptively integrates multi-dimensional (2D/2.5D/3D) convolutions to learn dense intra-slice information and sparse inter-slice information of the anisotropic bpMRI in a balanced manner. We also propose a self-supervised learning (SSL) technique that effectively captures both intra-slice and inter-slice semantic information using large-scale unlabeled data. Furthermore, we constrain the network to focus on the zonal anatomical regions to improve the detection and diagnosis capability of csPCa. We conducted extensive experiments on the PI-CAI (Prostate Imaging - Cancer AI) dataset comprising 10000+ multi-center and multi-scanner data. Our Z-SSMNet excelled in both lesion-level detection (AP score of 0.633) and patient-level diagnosis (AUROC score of 0.881), securing the top position in the Open Development Phase of the PI-CAI challenge and maintained strong performance, achieving an AP score of 0.690 and an AUROC score of 0.909, and securing the second-place ranking in the Closed Testing Phase. These findings underscore the potential of AI-driven systems for csPCa diagnosis and management.
双参数磁共振成像(bpMRI)已成为临床显著性前列腺癌(csPCa)检测和诊断的关键手段。开发基于人工智能的系统,利用bpMRI识别csPCa,可通过提高效率和成本效益来改变前列腺癌(PCa)的管理方式。然而,目前使用卷积神经网络(CNN)和Transformer的先进方法在从各向异性bpMRI中学习平面内和三维空间信息方面存在局限性。它们的性能还取决于大量、多样且标注良好的bpMRI数据集的可用性。为应对这些挑战,我们提出了区域感知自监督网格网络(Z-SSMNet),该网络以平衡的方式自适应地集成多维(2D/2.5D/3D)卷积,以学习各向异性bpMRI的密集片内信息和稀疏片间信息。我们还提出了一种自监督学习(SSL)技术,该技术利用大规模未标记数据有效地捕捉片内和片间语义信息。此外,我们约束网络专注于区域解剖区域,以提高csPCa的检测和诊断能力。我们在包含10000多个多中心和多扫描仪数据的PI-CAI(前列腺成像-癌症人工智能)数据集上进行了广泛实验。我们的Z-SSMNet在病变级检测(AP评分为0.633)和患者级诊断(AUROC评分为0.881)方面均表现出色,在PI-CAI挑战的开放开发阶段位居榜首,并保持了强劲的性能,AP评分为0.690,AUROC评分为0.909,在封闭测试阶段获得第二名。这些发现凸显了人工智能驱动系统在csPCa诊断和管理方面的潜力。