Suppr超能文献

脑龄(BrainAGE)与阿尔茨海默病生物标志物之间的关联。

Association between BrainAGE and Alzheimer's disease biomarkers.

作者信息

Abughofah Yousaf, Deardorff Rachael, Vosmeier Aaron, Hottle Savannah, Dage Jeffrey L, Dempsey Desarae, Apostolova Liana G, Brosch Jared, Clark David, Farlow Martin, Foroud Tatiana, Gao Sujuan, Wang Sophia, Zetterberg Henrik, Blennow Kaj, Saykin Andrew J, Risacher Shannon L

机构信息

Indiana Medical Student Program for Research and Scholarship, Indiana University School of Medicine Indianapolis Indiana USA.

Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine Indianapolis Indiana USA.

出版信息

Alzheimers Dement (Amst). 2025 Feb 27;17(1):e70094. doi: 10.1002/dad2.70094. eCollection 2025 Jan-Mar.

Abstract

INTRODUCTION

The brain age gap estimation (BrainAGE) method uses a machine learning model to generate an age estimate from structural magnetic resonance imaging (MRI) scans. The goal was to study the association of brain age with Alzheimer's disease (AD) imaging and plasma biomarkers.

METHODS

One hundred twenty-three individuals from the Indiana Memory and Aging Study underwent structural MRI, amyloid and tau positron emission tomography (PET), and plasma sampling. The MRI scans were processed using the software program BrainAgeR to receive a "brain age" estimate. Plasma biomarker concentrations were measured, and partial Pearson correlation models were used to evaluate their relationship with brain age gap (BAG) estimation (BrainAGE = chronological age - MRI estimated brain age).

RESULTS

Significant associations between BAG and amyloid and tau levels on PET and in plasma were observed depending on diagnostic categories.

DISCUSSION

These findings suggest that BAG is potentially a biomarker of pathology in AD which can be applied to routine brain imaging.

HIGHLIGHTS

Novel research that uses an artificial intelligence learning tool to estimate brain age.Findings suggest that brain age gap is associated with plasma and positron emission tomography Alzheimer's disease (AD) biomarkers.Differential relationships are seen in different stages of disease (preclinical vs. clinical).Results could play a role in early AD diagnosis and treatment.

摘要

引言

脑龄差距估计(BrainAGE)方法使用机器学习模型从结构磁共振成像(MRI)扫描中生成年龄估计值。目的是研究脑龄与阿尔茨海默病(AD)影像学及血浆生物标志物之间的关联。

方法

来自印第安纳记忆与衰老研究的123名个体接受了结构MRI、淀粉样蛋白和tau正电子发射断层扫描(PET)以及血浆采样。使用软件程序BrainAgeR对MRI扫描进行处理,以获得“脑龄”估计值。测量血浆生物标志物浓度,并使用偏皮尔逊相关模型评估其与脑龄差距(BAG)估计值(BrainAGE = 实际年龄 - MRI估计的脑龄)之间的关系。

结果

根据诊断类别,观察到BAG与PET及血浆中的淀粉样蛋白和tau水平之间存在显著关联。

讨论

这些发现表明,BAG可能是AD病理学的一种生物标志物,可应用于常规脑成像。

亮点

使用人工智能学习工具估计脑龄的新研究。研究结果表明脑龄差距与血浆及正电子发射断层扫描阿尔茨海默病(AD)生物标志物相关。在疾病的不同阶段(临床前与临床)观察到不同的关系。结果可能在AD早期诊断和治疗中发挥作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba11/11865712/4bcf4aabcd28/DAD2-17-e70094-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验