Zhan Yangen, Zhang Yongbing, Hu Zheqi, Wang Yifeng, Zhu Zirui, Du Sijing, Yan Xiangming, Li Xiu
Division of Information Science and Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518052, China.
School of Computer Science and Technology, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
Genome Med. 2025 Feb 28;17(1):16. doi: 10.1186/s13073-025-01442-8.
Spatial transcriptomics (ST) enables the study of gene expression in spatial context, but many ST technologies face challenges due to limited resolution, leading to cell mixtures at each spot. We present LETSmix to deconvolve cell types by integrating spatial correlations through a tailored LETS filter, which leverages layer annotations, expression similarities, image texture features, and spatial coordinates to refine ST data. Additionally, LETSmix employs a mixup-augmented domain adaptation strategy to address discrepancies between ST and reference single-cell RNA sequencing data. Comprehensive evaluations across diverse ST platforms and tissue types demonstrate its high accuracy in estimating cell-type proportions and spatial patterns, surpassing existing methods (URL: https://github.com/ZhanYangen/LETSmix ).
空间转录组学(ST)能够在空间背景下研究基因表达,但由于分辨率有限,许多ST技术面临挑战,导致每个位点存在细胞混合现象。我们提出了LETSmix,通过定制的LETS滤波器整合空间相关性来解卷积细胞类型,该滤波器利用层注释、表达相似性、图像纹理特征和空间坐标来优化ST数据。此外,LETSmix采用混合增强域适应策略来解决ST与参考单细胞RNA测序数据之间的差异。在不同ST平台和组织类型上的综合评估表明,它在估计细胞类型比例和空间模式方面具有很高的准确性,超过了现有方法(网址:https://github.com/ZhanYangen/LETSmix )。