Suppr超能文献

使用可扩展的开源工具包进行深度学习驱动的自动化高内涵dSTORM成像。

Deep learning-driven automated high-content dSTORM imaging with a scalable open-source toolkit.

作者信息

Linke Janis T, Appeltshauser Luise, Doppler Kathrin, Heinze Katrin G

机构信息

Rudolf Virchow Center for Integrative and Translational Bioimaging, Julius-Maximilians-Universität Würzburg (JMU), Würzburg, Germany.

Department of Neurology, University Hospital Würzburg, Würzburg, Germany.

出版信息

Biophys Rep (N Y). 2025 Feb 28;5(2):100201. doi: 10.1016/j.bpr.2025.100201.

Abstract

Super-resolution microscopy offers the ability to visualize molecular structures in biological samples with unprecedented detail. However, the full potential of these techniques is often hindered by a lack of automated, user-independent workflows. Here, we present an open-source toolkit that automates dSTORM super-resolution microscopy using deep learning for segmentation and object detection. This standalone program enables reliable segmentation of diverse biomedical images, even in low-contrast samples, surpassing existing solutions. Integrated into the imaging pipeline, it rapidly processes high-content data in minutes, reducing manual labor. Demonstrated by biological examples, such as microtubules in cell culture and the βII-spectrin in nerve fibers, our approach makes super-resolution imaging faster, more robust, and easy to use, even by nonexperts. This broadens its potential applications in biomedicine, including high-throughput experimentation.

摘要

超分辨率显微镜能够以前所未有的细节可视化生物样本中的分子结构。然而,这些技术的全部潜力常常因缺乏自动化、无需用户干预的工作流程而受到阻碍。在此,我们展示了一个开源工具包,该工具包利用深度学习进行分割和目标检测,实现了直接随机光学重建显微镜(dSTORM)超分辨率显微镜的自动化。这个独立程序能够对各种生物医学图像进行可靠分割,即使在低对比度样本中也是如此,优于现有解决方案。集成到成像流程中后,它能在几分钟内快速处理高内涵数据,减少人工操作。通过细胞培养中的微管和神经纤维中的βII-血影蛋白等生物学实例证明,我们的方法使超分辨率成像更快、更稳健且易于使用,即使非专业人员也能操作。这拓宽了其在生物医学中的潜在应用,包括高通量实验。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0882/11986538/2bffd1e83544/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验