Suppr超能文献

基于机器学习模型预测急性主动脉夹层患者院内急性肾损伤风险

Machine Learning Model-Based Prediction of In-Hospital Acute Kidney Injury Risk in Acute Aortic Dissection Patients.

作者信息

Wei Zhili, Liu Shidong, Chen Yang, Liu Hongxu, Liu Guangzu, Hu Yuan, Song Bing

机构信息

The First Clinical Medical College of Lanzhou University, 730000 Lanzhou, Gansu, China.

Department of Cardiovascular Surgery, First Hospital of Lanzhou University, 730000 Lanzhou, Gansu, China.

出版信息

Rev Cardiovasc Med. 2025 Feb 21;26(2):25768. doi: 10.31083/RCM25768. eCollection 2025 Feb.

Abstract

BACKGROUND

This study aimed to identify the risk factors for in-hospital acute kidney injury (AKI) in patients with acute aortic dissection (AAD) and to establish a machine learning model for predicting in-hospital AKI.

METHODS

We extracted data on patients with AAD from the Medical Information Mart for Intensive Care (MIMIC)-IV database and developed seven machine learning models: support vector machine (SVM), gradient boosting machine (GBM), neural network (NNET), eXtreme gradient boosting (XGBoost), K-nearest neighbors (KNN), light gradient boosting machine (LightGBM), and categorical boosting (CatBoost). Model performance was assessed using the area under the receiver operating characteristic curve (AUC), and the optimal model was interpreted using Shapley Additive explanations (SHAP) visualization analysis.

RESULTS

A total of 325 patients with AAD were identified from the MIMIC-IV database, of which 84 patients (25.85%) developed in-hospital AKI. This study collected 42 features, with nine selected for model building. A total of 70% of the patients were randomly allocated to the training set, while the remaining 30% were allocated to the test set. Machine learning models were built on the training set and validated using the test set. In addition, we collected AAD patient data from the MIMIC-III database for external validation. Among the seven machine learning models, the CatBoost model performed the best, with an AUC of 0.876 in the training set and 0.723 in the test set. CatBoost also performed strongly during the validation, achieving an AUC of 0.712. SHAP visualization analysis identified the most important risk factors for in-hospital AKI in AAD patients as maximum blood urea nitrogen (BUN), body mass index (BMI), urine output, maximum glucose (GLU), minimum BUN, minimum creatinine, maximum creatinine, weight and acute physiology score III (APSIII).

CONCLUSIONS

The CatBoost model, constructed using risk factors including maximum and minimum BUN levels, BMI, urine output, and maximum GLU, effectively predicts the risk of in-hospital AKI in AAD patients and shows compelling results in further validations.

摘要

背景

本研究旨在确定急性主动脉夹层(AAD)患者院内急性肾损伤(AKI)的危险因素,并建立预测院内AKI的机器学习模型。

方法

我们从重症监护医学信息数据库(MIMIC)-IV中提取AAD患者的数据,并开发了七种机器学习模型:支持向量机(SVM)、梯度提升机(GBM)、神经网络(NNET)、极端梯度提升(XGBoost)、K近邻(KNN)、轻梯度提升机(LightGBM)和分类提升(CatBoost)。使用受试者操作特征曲线下面积(AUC)评估模型性能,并使用Shapley加法解释(SHAP)可视化分析解释最佳模型。

结果

从MIMIC-IV数据库中识别出325例AAD患者,其中84例(25.85%)发生院内AKI。本研究收集了42个特征,选择了9个用于模型构建。总共70%的患者被随机分配到训练集,其余30%被分配到测试集。在训练集上建立机器学习模型,并使用测试集进行验证。此外,我们从MIMIC-III数据库中收集AAD患者数据进行外部验证。在七种机器学习模型中,CatBoost模型表现最佳,训练集AUC为0.876,测试集AUC为0.723。CatBoost在验证期间也表现出色,AUC为0.712。SHAP可视化分析确定AAD患者院内AKI的最重要危险因素为最高血尿素氮(BUN)、体重指数(BMI)、尿量、最高血糖(GLU)、最低BUN、最低肌酐、最高肌酐、体重和急性生理学评分III(APSIII)。

结论

使用包括最高和最低BUN水平、BMI、尿量和最高GLU在内的危险因素构建的CatBoost模型可有效预测AAD患者院内AKI的风险,并在进一步验证中显示出令人信服的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b84d/11868902/a1b6a4e512a9/2153-8174-26-2-25768-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验