Xu Liang, Da Miao
Department of Psychiatry, Huzhou Third Municipal Hospital, the Affiliated Hospital of Huzhou University, Huzhou, Zhejiang, People's Republic of China.
Clin Epidemiol. 2025 Feb 25;17:197-209. doi: 10.2147/CLEP.S501062. eCollection 2025.
Psychiatric inpatients face an increased risk of deep vein thrombosis (DVT) due to their psychiatric conditions and pharmacological treatments. However, research focusing on this population remains limited.
This study analyzed 17,434 psychiatric inpatients at Huzhou Third Municipal Hospital, incorporating data on demographics, psychiatric diagnoses, physical illnesses, laboratory results, and medication use. Predictive models for DVT were developed using logistic regression, random forest, support vector machine (SVM), and XGBoost (Extreme Gradient Boosting). Feature importance was assessed using the random forest model.
The DVT incidence among psychiatric inpatients was 1.6%. Predictive model performance, measured by the area under the curve (AUC), showed logistic regression (0.900), random forest (0.885), SVM (0.890), and XGBoost (0.889) performed well. Logistic regression and random forest models exhibited optimal overall performance, while XGBoost excelled in recall. Significant predictors of DVT included elevated D-dimer levels, age, Alzheimer's disease, and Madopar use.
Psychiatric inpatients require vigilance for DVT risk, with factors like D-dimer levels and age serving as critical indicators. Machine learning models effectively predict DVT risk, enabling early detection and personalized prevention strategies in clinical practice.
精神科住院患者因其精神疾病和药物治疗面临深静脉血栓形成(DVT)风险增加。然而,针对这一人群的研究仍然有限。
本研究分析了湖州市第三人民医院的17434名精神科住院患者,纳入了人口统计学、精神科诊断、躯体疾病、实验室检查结果和用药情况等数据。使用逻辑回归、随机森林、支持向量机(SVM)和XGBoost(极端梯度提升)开发了DVT预测模型。使用随机森林模型评估特征重要性。
精神科住院患者中DVT发生率为1.6%。通过曲线下面积(AUC)衡量的预测模型性能显示,逻辑回归(0.900)、随机森林(0.885)、SVM(0.890)和XGBoost(0.889)表现良好。逻辑回归和随机森林模型表现出最佳的整体性能,而XGBoost在召回率方面表现出色。DVT的重要预测因素包括D-二聚体水平升高、年龄、阿尔茨海默病和使用美多芭。
精神科住院患者需要警惕DVT风险,D-二聚体水平和年龄等因素是关键指标。机器学习模型可有效预测DVT风险,有助于临床实践中的早期检测和个性化预防策略。