Önder Ahmet, Ng Zhi Kai, Tsang Siu Hon, Alagappan Palaniappan, Teo Edwin Hang Tong, Yildiz Ümit Hakan
Department of Chemistry, Izmir Institute of Technology, Urla, Izmir 35430, Türkiye.
Temasek Laboratories, Research Techno Plaza, 50 Nanyang Drive, Singapore 637553, Singapore.
ACS Omega. 2025 Feb 14;10(7):6578-6585. doi: 10.1021/acsomega.4c07239. eCollection 2025 Feb 25.
Detection of ions is challenging due to their small size, rapid diffusion, and high mobility, especially for assaying in samples of low volumes. Among the traditional analytical methods, potentiometric ion-selective electrodes (ISE) have become a popular choice for detecting ions as they are cost-effective, user-friendly and can be miniaturized, making them useful for on-site analysis. In this context, radially aligned carbon nanotubes (RACNT) directly grown on glass fibers (GF) via the chemical vapor deposition method is investigated as a solid contact material for the fabrication of ion-selective microelectrodes (μISE) upon incorporating specific ionophores within a polymeric encapsulation membrane. As an illustration, sensitive detection of ammonium ions is accomplished by the fabricated μISE (plasticized PVC membrane containing nonactin ionophores), which yielded a LOD and a linear response range between 7.5 × 10 and 1.0 × 10 to 1.0 × 10 M, respectively. The μISE fabricated with RACNT-GF as an interface material exhibited improvements in LOD and enhanced the detection selectivity as compared to a conventional ISE fabricated using planar solid contact materials such as graphite. We hypothesize that the fabricated μISE with a high surface area and mechanical durability maximize the accommodation of ionophores in the barrier membrane for yielding improved potentiometric responses. Experimental results illustrate that the μISE possesses the potential to be utilized for the fabrication of selective and sensitive ISE upon incorporation of specific ionophores with RACNT-GF composites.
由于离子体积小、扩散快且迁移率高,对其进行检测具有挑战性,尤其是在低体积样品中进行分析时。在传统分析方法中,电位型离子选择性电极(ISE)因其成本效益高、用户友好且可小型化,已成为检测离子的常用选择,使其适用于现场分析。在此背景下,研究了通过化学气相沉积法直接生长在玻璃纤维(GF)上的径向排列碳纳米管(RACNT)作为固体接触材料,用于在聚合物封装膜中加入特定离子载体来制造离子选择性微电极(μISE)。作为示例,通过制造的μISE(含有缬氨霉素离子载体的增塑PVC膜)实现了对铵离子的灵敏检测,其检测限和线性响应范围分别为7.5×10至1.0×10至1.0×10 M。与使用平面固体接触材料(如石墨)制造的传统ISE相比,以RACNT-GF作为界面材料制造的μISE在检测限方面有所改善,并提高了检测选择性。我们假设,具有高表面积和机械耐久性的制造的μISE可最大限度地在阻挡膜中容纳离子载体,以产生改善的电位响应。实验结果表明,在将特定离子载体与RACNT-GF复合材料结合后,μISE具有用于制造选择性和灵敏ISE的潜力。