Kreutzberger Mark A B, Yu Le Tracy, Bui Thi H, Hancu Maria C, Purdy Michael D, Osinski Tomasz, Kasson Peter M, Egelman Edward H, Hartgerink Jeffrey D
Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22903, United States.
Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States.
ACS Cent Sci. 2025 Feb 4;11(2):331-345. doi: 10.1021/acscentsci.5c00018. eCollection 2025 Feb 26.
Collagens are ubiquitous in biology: functioning as the backbone of the extracellular matrix, forming the primary structural components of key immune system complexes, and fulfilling numerous other structural roles in a variety of systems. Despite this, there is limited understanding of how triple helices, the basic collagen structural units, pack into collagenous assemblies. Here we use a peptide self-assembly system to design collagenous assemblies based on the C1q collagen-like region. Using cryo-EM we solved a structure of one assembly to 3.5 Å resolution and built an atomic model. From this, we identify a triple helix conformation with no superhelical twist, starkly in contrast to the canonical right-handed triple helix. This nontwisting region allows for unique hydroxyproline stacking between adjacent triple helices and also results in the formation of an exposed cavity with rings of hydrophobic amino acids packed symmetrically. We find no precedent for such an arrangement of collagen triple helices and designed assemblies with substituted amino acids in various locations to probe key stabilizing amino acid interactions in the complex. The stability of these altered complexes behaves as predicted by our atomic model. Our findings, combined with the extremely limited experimental structural data on triple helix packing in the literature, suggest that collagen and collagen-like assemblies may adopt a far more varied conformational landscape than previously appreciated. We hypothesize that this is particularly likely in packed assemblies of triple helices, adjacent to the termini of these helices and at discontinuities in the required Xaa-Yaa-Gly repeating primary sequence, a discontinuity found in the majority of this class of proteins and in many collagen-associated diseases.
作为细胞外基质的骨架,构成关键免疫系统复合物的主要结构成分,并在多种系统中发挥许多其他结构作用。尽管如此,对于基本的胶原蛋白结构单元三螺旋如何组装成胶原质聚集体,人们的了解仍然有限。在这里,我们使用一种肽自组装系统,基于C1q胶原样区域设计胶原质聚集体。利用冷冻电镜,我们解析了一种聚集体的结构,分辨率达到3.5 Å,并构建了一个原子模型。由此,我们确定了一种没有超螺旋扭曲的三螺旋构象,这与典型的右手三螺旋形成鲜明对比。这个无扭曲区域允许相邻三螺旋之间独特的羟脯氨酸堆积,还导致形成一个暴露的腔,腔内有对称排列的疏水氨基酸环。我们没有发现胶原蛋白三螺旋这种排列方式的先例,并在不同位置设计了带有取代氨基酸的聚集体,以探究该复合物中关键的稳定氨基酸相互作用。这些改变后的复合物的稳定性正如我们的原子模型所预测的那样。我们的研究结果,结合文献中关于三螺旋堆积的极其有限的实验结构数据,表明胶原蛋白和胶原样聚集体可能具有比以前所认识到的更加多样的构象格局。我们推测,在三螺旋的堆积聚集体中,尤其是在这些螺旋的末端附近以及所需的Xaa-Yaa-Gly重复一级序列的间断处,这种情况特别可能发生,这种间断在这类蛋白质的大多数以及许多与胶原蛋白相关的疾病中都能发现。