Suppr超能文献

情绪偏差的神经特征可预测难治性抑郁症的临床结局。

Neural signatures of emotional biases predict clinical outcomes in difficult-to-treat depression.

作者信息

Fennema Diede, Barker Gareth J, O'Daly Owen, Godlewska Beata R, Carr Ewan, Goldsmith Kimberley, Young Allan H, Moll Jorge, Zahn Roland

机构信息

Centre of Affective Disorders, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.

Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.

出版信息

Res Dir Depress. 2024 Oct 1;1:e21. doi: 10.1017/dep.2024.6. eCollection 2024.

Abstract

BACKGROUND

Neural predictors underlying variability in depression outcomes are poorly understood. Functional MRI measures of subgenual cortex connectivity, self-blaming and negative perceptual biases have shown prognostic potential in treatment-naïve, medication-free and fully remitting forms of major depressive disorder (MDD). However, their role in more chronic, difficult-to-treat forms of MDD is unknown.

METHODS

Forty-five participants (n = 38 meeting minimum data quality thresholds) fulfilled criteria for difficult-to-treat MDD. Clinical outcome was determined by computing percentage change at follow-up from baseline (four months) on the self-reported Quick Inventory of Depressive Symptomatology (16-item). Baseline measures included self-blame-selective connectivity of the right superior anterior temporal lobe with an Brodmann Area 25 region-of-interest, blood-oxygen-level-dependent bilateral amygdala activation for subliminal sad vs happy faces, and resting-state connectivity of the subgenual cortex with an defined ventrolateral prefrontal cortex/insula region-of-interest.

FINDINGS

A linear regression model showed that baseline severity of depressive symptoms explained 3% of the variance in outcomes at follow-up ([3,34] = .33, = .81). In contrast, our three pre-registered neural measures combined, explained 32% of the variance in clinical outcomes ([4,33] = 3.86, .01).

CONCLUSION

These findings corroborate the pathophysiological relevance of neural signatures of emotional biases and their potential as predictors of outcomes in difficult-to-treat depression.

摘要

背景

抑郁症治疗结果变异性背后的神经预测因素尚不清楚。膝下皮质连接性、自责和负性感知偏差的功能磁共振成像测量已显示出在未经治疗、未服用药物且完全缓解的重度抑郁症(MDD)形式中的预后潜力。然而,它们在更慢性、难治性MDD形式中的作用尚不清楚。

方法

45名参与者(n = 38名达到最低数据质量阈值)符合难治性MDD的标准。临床结局通过计算随访时相对于基线(四个月)自我报告的抑郁症状快速量表(16项)的百分比变化来确定。基线测量包括右侧颞上前叶与布罗德曼25区感兴趣区域的自责选择性连接、阈下悲伤与快乐面孔的血氧水平依赖的双侧杏仁核激活,以及膝下皮质与定义的腹外侧前额叶皮质/脑岛感兴趣区域的静息态连接。

结果

线性回归模型显示,抑郁症状的基线严重程度解释了随访结局中3%的方差([3,34] = 0.33,p = 0.81)。相比之下,我们预先登记的三项神经测量指标综合起来解释了临床结局中32%的方差([4,33] = 3.86,p < 0.01)。

结论

这些发现证实了情绪偏差神经特征的病理生理相关性及其作为难治性抑郁症结局预测指标的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1264/11869767/2e56e9cffb63/S2976900024000069_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验