Suppr超能文献

大图上的快速半监督学习:一种改进的格林函数方法。

Fast Semi-Supervised Learning on Large Graphs: An Improved Green-Function Method.

作者信息

Nie Feiping, Song Yitao, Chang Wei, Wang Rong, Li Xuelong

出版信息

IEEE Trans Pattern Anal Mach Intell. 2024 Dec 17;PP. doi: 10.1109/TPAMI.2024.3518595.

Abstract

In the graph-based semi-supervised learning, the Green-function method is a classical method that works by computing the Green's function in the graph space. However, when applied to large graphs, especially those sparse ones, this method performs unstably and unsatisfactorily. We make a detailed analysis on it and propose a novel method from the perspective of optimization. On fully connected graphs, the method is equivalent to the Green-function method and can be seen as another interpretation with physical meanings, while on non-fully connected graphs, it helps to explain why the Green-function method causes a mess on large sparse graphs. To solve this dilemma, we propose a workable approach to improve our proposed method. Unlike the original method, our improved method can also apply two accelerating techniques, Gaussian Elimination, and Anchored Graphs to become more efficient on large graphs. Finally, the extensive experiments prove our conclusions and the efficiency, accuracy, and stability of our improved Green's function method.

摘要

在基于图的半监督学习中,格林函数方法是一种经典方法,它通过在图空间中计算格林函数来工作。然而,当应用于大型图,尤其是那些稀疏图时,该方法表现不稳定且不尽人意。我们对其进行了详细分析,并从优化的角度提出了一种新方法。在完全连通图上,该方法等同于格林函数方法,并且可以被视为具有物理意义的另一种解释,而在非完全连通图上,它有助于解释为什么格林函数方法在大型稀疏图上会产生混乱。为了解决这一困境,我们提出了一种可行的方法来改进我们提出的方法。与原始方法不同,我们的改进方法还可以应用两种加速技术,即高斯消元法和锚定图,从而在大型图上变得更高效。最后,大量实验证明了我们的结论以及我们改进的格林函数方法的效率、准确性和稳定性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验