Suppr超能文献

Narrowband-Enhanced Method for Improving Frequency Recognition in SSVEP-BCIs.

作者信息

Li Ruxue, Zhao Xi, Wang Zhenyu, Xu Guiying, Hu Honglin, Zhou Ting, Xu Tianheng

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2024 Jul;2024:1-4. doi: 10.1109/EMBC53108.2024.10782374.

Abstract

Steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCI) provide a non-invasive and effective means for communication and control, which fundamentally rely on the feature of frequency information. However, filter banks in conventional spatial filter classification methods do not effectively utilize narrowband information. This study proposed a narrowband-enhanced filter bank canonical correlation analysis (NE-FBCCA) to integrate narrowband signal processing with a broadband filter bank analysis. By employing adaptive signal decomposition via multivariate fast iterative filtering (MvFIF), the specific component corresponding to the stimulus frequency can be strengthened separately. To validate the efficacy of this method, we conducted a performance evaluation using public SSVEP datasets. The results demonstrate a notable enhancement of reconstructed EEG signals in the signal-to-noise ratio (SNR) of stimulus frequency responses. Furthermore, there are significant improvements observed in classification accuracy and ITRs when compared to standard canonical correlation analysis (CCA) and filter bank CCA (FBCCA) approaches. This study provides a narrowband signal processing strategy for SSVEP responses and shows its potential to improve the performance of SSVEP-based BCI systems.

摘要

相似文献

1
Narrowband-Enhanced Method for Improving Frequency Recognition in SSVEP-BCIs.
Annu Int Conf IEEE Eng Med Biol Soc. 2024 Jul;2024:1-4. doi: 10.1109/EMBC53108.2024.10782374.
2
3
Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain-computer interface.
J Neural Eng. 2015 Aug;12(4):046008. doi: 10.1088/1741-2560/12/4/046008. Epub 2015 Jun 2.
4
Spectrum-Enhanced TRCA (SE-TRCA): A novel approach for direction detection in SSVEP-based BCI.
Comput Biol Med. 2023 Nov;166:107488. doi: 10.1016/j.compbiomed.2023.107488. Epub 2023 Sep 18.
5
A L1 normalization enhanced dynamic window method for SSVEP-based BCIs.
J Neurosci Methods. 2022 Oct 1;380:109688. doi: 10.1016/j.jneumeth.2022.109688. Epub 2022 Aug 13.
6
A Precise Frequency Recognition Method of Short-Time SSVEP Signals Based on Signal Extension.
IEEE Trans Neural Syst Rehabil Eng. 2023;31:2486-2496. doi: 10.1109/TNSRE.2023.3274121. Epub 2023 Jun 1.
7
SSVEP-EEG Feature Enhancement Method Using an Image Sharpening Filter.
IEEE Trans Neural Syst Rehabil Eng. 2022;30:115-123. doi: 10.1109/TNSRE.2022.3142736. Epub 2022 Jan 28.
9
Filter bank temporally delayed CCA for uncalibrated SSVEP-BCI.
Med Biol Eng Comput. 2025 Feb;63(2):355-363. doi: 10.1007/s11517-024-03193-x. Epub 2024 Sep 24.
10
A novel training-free recognition method for SSVEP-based BCIs using dynamic window strategy.
J Neural Eng. 2021 Mar 8;18(3). doi: 10.1088/1741-2552/ab914e.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验