Suppr超能文献

MFI-Net:多级特征可逆网络图像隐藏技术

MFI-Net: multi-level feature invertible network image concealment technique.

作者信息

Cheng Dapeng, Zhu Minghui, Yang Bo, Gao Xiaolian, Jing Wanting, Mao Yanyan, Zhao Feng

机构信息

School of Computer Science and Technology, Shandong Technology and Business University, Yantai, Shandong, China.

School of Information Technology, Hainan College of Economics and Business University, Haikou, Hainan, China.

出版信息

PeerJ Comput Sci. 2025 Feb 14;11:e2668. doi: 10.7717/peerj-cs.2668. eCollection 2025.

Abstract

The utilization of deep learning and invertible networks for image hiding has been proven effective and secure. These methods can conceal large amounts of information while maintaining high image quality and security. However, existing methods often lack precision in selecting the hidden regions and primarily rely on residual structures. They also fail to fully exploit low-level features, such as edges and textures. These issues lead to reduced quality in model generation results, a heightened risk of network overfitting, and diminished generalization capability. In this article, we propose a novel image hiding method based on invertible networks, called MFI-Net. The method introduces a new upsampling convolution block (UCB) and combines it with a residual dense block that employs the parametric rectified linear unit (PReLU) activation function, effectively utilizing multi-level information (low-level and high-level features) of the image. Additionally, a novel frequency domain loss (FDL) is introduced, which constrains the secret information to be hidden in regions of the cover image that are more suitable for concealing the data. Extensive experiments on the DIV2K, COCO, and ImageNet datasets demonstrate that MFI-Net consistently outperforms state-of-the-art methods, achieving superior image quality metrics. Furthermore, we apply the proposed method to digital collection images, achieving significant success.

摘要

深度学习和可逆网络在图像隐藏中的应用已被证明是有效且安全的。这些方法能够在保持高图像质量和安全性的同时隐藏大量信息。然而,现有方法在选择隐藏区域时往往缺乏精度,并且主要依赖于残差结构。它们也未能充分利用边缘和纹理等低级特征。这些问题导致模型生成结果的质量下降、网络过拟合风险增加以及泛化能力减弱。在本文中,我们提出了一种基于可逆网络的新型图像隐藏方法,称为MFI-Net。该方法引入了一种新的上采样卷积块(UCB),并将其与采用参数化修正线性单元(PReLU)激活函数的残差密集块相结合,有效地利用了图像的多级信息(低级和高级特征)。此外,还引入了一种新型频域损失(FDL),它将秘密信息约束隐藏在更适合隐藏数据的掩护图像区域中。在DIV2K、COCO和ImageNet数据集上进行的大量实验表明,MFI-Net始终优于现有方法,实现了卓越的图像质量指标。此外,我们将所提出的方法应用于数字馆藏图像,取得了显著成功。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52f8/11888862/d038c9397264/peerj-cs-11-2668-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验