Ma Ji-Ming, Wang Peng-Fei, Yang Liu-Qing, Wang Jun-Kai, Song Jian-Ping, Li Yu-Mei, Wen Yan, Tang Bing-Jun, Wang Xue-Dong
Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, Beijing 102218, China.
Department of Information Administration, Beijing Tsinghua Changgung Hospital, Beijing 102218, China.
World J Gastroenterol. 2025 Feb 28;31(8):102071. doi: 10.3748/wjg.v31.i8.102071.
The International Study Group of Pancreatic Surgery has established the definition and grading system for postpancreatectomy acute pancreatitis (PPAP). There are no established machine learning models for predicting PPAP following pancreaticoduodenectomy (PD).
To explore the predictive model of PPAP, and test its predictive efficacy to guide the clinical work.
Clinical data from consecutive patients who underwent PD between 2016 and 2024 were retrospectively collected. An analysis of PPAP risk factors was performed, various machine learning algorithms [logistic regression, random forest, gradient boosting decision tree, extreme gradient boosting, light gradient boosting machine, and category boosting (CatBoost)] were utilized to develop predictive models. Recursive feature elimination was employed to select several variables to achieve the optimal machine algorithm.
The study included 381 patients, of whom 88 (23.09%) developed PPAP. PPAP patients exhibited a significantly higher incidence of postoperative pancreatic fistula (55.68% 14.68%, < 0.001), grade C postoperative pancreatic fistula (9.09% 1.37%, = 0.001). The CatBoost algorithm outperformed other algorithms with a mean area under the receiver operating characteristic curve of 0.859 [95% confidence interval (CI): 0.814-0.905] in the training cohort and 0.822 (95%CI: 0.717-0.927) in the testing cohort. According to shapley additive explanations analysis, pancreatic texture, main pancreatic duct diameter, body mass index, estimated blood loss, and surgery time were the most important variables based on recursive feature elimination. The CatBoost algorithm based on selected variables demonstrated superior performance, with an area under the receiver operating characteristic curve of 0.837 (95%CI: 0.788-0.886) in the training cohort and 0.812 (95%CI: 0.697-0.927) in the testing cohort.
We developed the first machine learning-based predictive model for PPAP following PD. This predictive model can assist surgeons in anticipating and managing this complication proactively.
国际胰腺外科学研究组已建立胰十二指肠切除术后急性胰腺炎(PPAP)的定义和分级系统。目前尚无用于预测胰十二指肠切除术(PD)后PPAP的成熟机器学习模型。
探索PPAP的预测模型,并测试其预测效能以指导临床工作。
回顾性收集2016年至2024年间连续接受PD治疗患者的临床资料。对PPAP危险因素进行分析,利用多种机器学习算法[逻辑回归、随机森林、梯度提升决策树、极限梯度提升、轻量级梯度提升机和类别提升(CatBoost)]建立预测模型。采用递归特征消除法选择几个变量以实现最优机器学习算法。
该研究纳入381例患者,其中88例(23.09%)发生PPAP。PPAP患者术后胰瘘发生率显著更高(55.68% 对14.68%,P<0.001),C级术后胰瘘发生率也更高(9.09% 对1.37%,P = 0.001)。在训练队列中,CatBoost算法的表现优于其他算法,受试者操作特征曲线下的平均面积为0.859[95%置信区间(CI):0.814 - 0.905],在测试队列中为0.822(95%CI:0.717 - 0.927)。根据Shapley加性解释分析,基于递归特征消除,胰腺质地、主胰管直径、体重指数、估计失血量和手术时间是最重要的变量。基于所选变量的CatBoost算法表现出卓越性能,在训练队列中受试者操作特征曲线下的面积为0.837(95%CI:0.788 - 0.886),在测试队列中为0.812(95%CI:0.697 - 0.927)。
我们开发了首个基于机器学习的PD后PPAP预测模型。该预测模型可协助外科医生主动预测和管理这一并发症。