He Rosemary, Sarwal Varuni, Qiu Xinru, Zhuang Yongwen, Zhang Le, Liu Yue, Chiang Jeffrey
Department of Computer Science, University of California, Los Angeles, Los Angeles, CA, United States.
Department of Computational Medicine, University of California, Los Angeles, Los Angeles, CA, United States.
J Med Internet Res. 2025 Mar 10;27:e59792. doi: 10.2196/59792.
Trajectory modeling is a long-standing challenge in the application of computational methods to health care. In the age of big data, traditional statistical and machine learning methods do not achieve satisfactory results as they often fail to capture the complex underlying distributions of multimodal health data and long-term dependencies throughout medical histories. Recent advances in generative artificial intelligence (AI) have provided powerful tools to represent complex distributions and patterns with minimal underlying assumptions, with major impact in fields such as finance and environmental sciences, prompting researchers to apply these methods for disease modeling in health care.
While AI methods have proven powerful, their application in clinical practice remains limited due to their highly complex nature. The proliferation of AI algorithms also poses a significant challenge for nondevelopers to track and incorporate these advances into clinical research and application. In this paper, we introduce basic concepts in generative AI and discuss current algorithms and how they can be applied to health care for practitioners with little background in computer science.
We surveyed peer-reviewed papers on generative AI models with specific applications to time-series health data. Our search included single- and multimodal generative AI models that operated over structured and unstructured data, physiological waveforms, medical imaging, and multi-omics data. We introduce current generative AI methods, review their applications, and discuss their limitations and future directions in each data modality.
We followed the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews) guidelines and reviewed 155 articles on generative AI applications to time-series health care data across modalities. Furthermore, we offer a systematic framework for clinicians to easily identify suitable AI methods for their data and task at hand.
We reviewed and critiqued existing applications of generative AI to time-series health data with the aim of bridging the gap between computational methods and clinical application. We also identified the shortcomings of existing approaches and highlighted recent advances in generative AI that represent promising directions for health care modeling.
轨迹建模是将计算方法应用于医疗保健领域长期面临的一项挑战。在大数据时代,传统的统计和机器学习方法无法取得令人满意的结果,因为它们往往无法捕捉多模态健康数据的复杂潜在分布以及整个病史中的长期依赖性。生成式人工智能(AI)的最新进展提供了强大的工具,能够在极少潜在假设的情况下表示复杂的分布和模式,在金融和环境科学等领域产生了重大影响,促使研究人员将这些方法应用于医疗保健中的疾病建模。
虽然人工智能方法已被证明功能强大,但由于其高度复杂的性质,它们在临床实践中的应用仍然有限。人工智能算法的激增也给非开发者带来了重大挑战,使他们难以跟踪并将这些进展纳入临床研究和应用。在本文中,我们介绍生成式人工智能的基本概念,并讨论当前的算法,以及它们如何应用于计算机科学背景较少的医疗从业者的医疗保健领域。
我们调查了经同行评审的关于生成式人工智能模型在时间序列健康数据方面具体应用的论文。我们的搜索包括对结构化和非结构化数据、生理波形、医学成像和多组学数据进行操作的单模态和多模态生成式人工智能模型。我们介绍当前的生成式人工智能方法,回顾它们的应用,并讨论它们在每种数据模式下的局限性和未来方向。
我们遵循PRISMA-ScR(系统评价和元分析扩展版的范围综述的首选报告项目)指南,回顾了155篇关于生成式人工智能在跨模式时间序列医疗保健数据方面应用的文章。此外,我们为临床医生提供了一个系统框架,以便他们轻松识别适合其手头数据和任务的人工智能方法。
我们回顾并批评了生成式人工智能在时间序列健康数据方面的现有应用,目的是弥合计算方法与临床应用之间的差距。我们还确定了现有方法的缺点,并强调了生成式人工智能的最新进展,这些进展代表了医疗保健建模的有前景的方向。