Jin Yutao, Sun Yue, Liang Jiabao, Yan Xiaoning, Hou Zeyao, Zheng Shuangwu, Chen Yang, Chen Xiaoyan
Tianjin University of Science and Technology, Tianjin, 300222, China.
Witeyesz Co., Ltd., Shenzhen, 518131, Guangdong, China.
Sci Rep. 2025 Mar 12;15(1):8611. doi: 10.1038/s41598-025-92161-y.
Images captured in low-light conditions often suffer from poor visibility and noise corruption. Low-light image enhancement (LLIE) aims to restore the brightness of under-exposed images. However, most previous LLIE solutions enhance low-light images via global mapping without considering various degradations of dark regions. Besides, these methods rely on convolutional neural networks for training, which have limitations in capturing long-range dependencies. To this end, we construct a hybrid framework dubbed hybLLIE that combines transformer and convolutional designs for LLIE task. Firstly, we propose a light-aware transformer (LAFormer) block that utilizes brightness representations to direct the modeling of valuable information in low-light regions. It is achieved by utilizing a learnable feature reassignment modulator to encourage inter-channel feature competition. Secondly, we introduce a SeqNeXt block to capture the local context, which is a ConvNet-based model to process sequences of image patches. Thirdly, we devise an efficient self-supervised mechanism to eliminate inappropriate features from the given under-exposed samples and employ high-order curves to brighten the low-light images. Extensive experiments demonstrate that our HybLLIE achieves comparable performance to 17 state-of-the-art methods on 7 representative datasets.
在低光照条件下拍摄的图像通常存在可见性差和噪声干扰的问题。低光照图像增强(LLIE)旨在恢复曝光不足图像的亮度。然而,大多数先前的LLIE解决方案通过全局映射来增强低光照图像,而没有考虑暗区域的各种退化情况。此外,这些方法依赖卷积神经网络进行训练,在捕捉长距离依赖关系方面存在局限性。为此,我们构建了一个名为hybLLIE的混合框架,将变压器和卷积设计结合用于LLIE任务。首先,我们提出了一种光感知变压器(LAFormer)模块,它利用亮度表示来指导对低光照区域中有价值信息的建模。这是通过使用可学习的特征重新分配调制器来鼓励通道间特征竞争实现的。其次,我们引入了一个SeqNeXt模块来捕捉局部上下文,它是一个基于卷积网络的模型,用于处理图像块序列。第三,我们设计了一种有效的自监督机制,从给定的曝光不足样本中消除不适当的特征,并采用高阶曲线来提亮低光照图像。大量实验表明,我们的HybLLIE在7个代表性数据集上的性能与17种先进方法相当。