Suppr超能文献

基于近红外光谱和Adaboost-CLDA的中国红枣产地鉴别

Geographical Origin Identification of Chinese Red Jujube Using Near-Infrared Spectroscopy and Adaboost-CLDA.

作者信息

Wu Xiaohong, Yang Ziteng, Yang Yonglan, Wu Bin, Sun Jun

机构信息

School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China.

High-Tech Key Laboratory of Agricultural Equipment and Intelligence of Jiangsu Province, Jiangsu University, Zhenjiang 212013, China.

出版信息

Foods. 2025 Feb 26;14(5):803. doi: 10.3390/foods14050803.

Abstract

Red jujube is a nutritious food, known as the "king of all fruits". The quality of Chinese red jujube is closely associated with its place of origin. To classify Chinese red jujube more correctly, based on the combination of adaptive boosting (Adaboost) and common vectors linear discriminant analysis (CLDA), Adaboost-CLDA was proposed to classify the near-infrared (NIR) spectra of red jujube samples. In the study, the NIR-M-R2 spectrometer was employed to scan red jujube from four different origins to acquire their NIR spectra. Savitzky-Golay filtering was used to preprocess the spectra. CLDA can effectively address the "small sample size" problem, and Adaboost-CLDA can achieve an extremely high classification accuracy rate; thus, Adaboost-CLDA was performed for feature extraction from the NIR spectra. Finally, K-nearest neighbor (KNN) and Bayes served as the classifiers for the identification of red jujube samples. Experiments indicated that Adaboost-CLDA achieved the highest identification accuracy in this identification system for red jujube compared with other feature extraction algorithms. This demonstrates that the combination of Adaboost-CLDA and NIR spectroscopy significantly enhances the classification accuracy, providing an effective method for identifying the geographical origin of Chinese red jujube.

摘要

红枣是一种营养丰富的食物,被誉为“百果之王”。中国红枣的品质与其产地密切相关。为了更准确地对中国红枣进行分类,基于自适应增强算法(Adaboost)和通用向量线性判别分析(CLDA)相结合的方法,提出了Adaboost-CLDA用于对红枣样本的近红外(NIR)光谱进行分类。在该研究中,采用NIR-M-R2光谱仪对来自四个不同产地的红枣进行扫描以获取其近红外光谱。使用Savitzky-Golay滤波对光谱进行预处理。CLDA能够有效解决“小样本量”问题,且Adaboost-CLDA可实现极高的分类准确率;因此,采用Adaboost-CLDA对近红外光谱进行特征提取。最后,使用K近邻(KNN)和贝叶斯算法作为分类器对红枣样本进行识别。实验表明,在该红枣识别系统中,与其他特征提取算法相比,Adaboost-CLDA实现了最高的识别准确率。这表明Adaboost-CLDA与近红外光谱相结合显著提高了分类准确率,为识别中国红枣的地理产地提供了一种有效方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8489/11899423/484075a4f530/foods-14-00803-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验