Xia Xian, Shimogawa Michelle M, Wang Hui, Liu Samuel, Wijono Angeline, Langousis Gerasimos, Kassem Ahmad M, Wohlschlegel James A, Hill Kent L, Zhou Z Hong
Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA.
California NanoSystems Institute, University of California, Los Angeles, CA, USA.
Science. 2025 Mar 14;387(6739):eadr3314. doi: 10.1126/science.adr3314.
The flagellum of drives the parasite's characteristic screw-like motion and is essential for its replication, transmission, and pathogenesis. However, the molecular details of this process remain unclear. Here, we present high-resolution (up to 2.8 angstrom) cryo-electron microscopy structures of flagellar doublet microtubules (DMTs). Integrated modeling identified 154 different axonemal proteins inside and outside the DMT and, together with genetic and proteomic interrogation, revealed conserved and trypanosome-specific foundations of flagellum assembly and motility. We captured axonemal dynein motors in their pre-power stroke state. Comparing atomic models between pre- and post-power strokes defined how dynein structural changes drive sliding of adjacent DMTs during flagellar beating. This study illuminates structural dynamics underlying flagellar motility and identifies pathogen-specific proteins to consider for therapeutic interventions targeting neglected diseases.
(寄生虫)鞭毛驱动寄生虫特有的螺旋状运动,对其复制、传播和致病机制至关重要。然而,这一过程的分子细节仍不清楚。在此,我们展示了(寄生虫)鞭毛双联微管(DMT)的高分辨率(高达2.8埃)冷冻电子显微镜结构。整合建模确定了DMT内外154种不同的轴丝蛋白,并通过基因和蛋白质组学研究,揭示了鞭毛组装和运动的保守基础以及锥虫特有的基础。我们捕捉到了处于动力冲程前状态的轴丝动力蛋白。比较动力冲程前后的原子模型,确定了动力蛋白结构变化如何在鞭毛摆动过程中驱动相邻DMT的滑动。这项研究阐明了鞭毛运动的结构动力学,并确定了针对被忽视疾病的治疗干预可考虑的病原体特异性蛋白质。