Suppr超能文献

将BE-FAIR公平性框架开发并应用于人群健康预测模型:一项回顾性观察队列研究。

Developing and Applying the BE-FAIR Equity Framework to a Population Health Predictive Model: A Retrospective Observational Cohort Study.

作者信息

Gupta Reshma, Sasaki Mayu, Taylor Sandra L, Fan Sili, Hoch Jeffrey S, Zhang Yi, Crase Matthew, Tancredi Dan, Adams Jason Y, Ton Hendry

机构信息

Office of Population Health and Accountable Care, University of California (UC) Davis Health, Sacramento, CA, USA.

Department of Medicine, UC Davis, Sacramento, USA.

出版信息

J Gen Intern Med. 2025 Aug;40(11):2537-2547. doi: 10.1007/s11606-025-09462-1. Epub 2025 Mar 14.

Abstract

BACKGROUND

Population health programs rely on healthcare predictive models to allocate resources, yet models can perpetuate biases that exacerbate health disparities among marginalized communities.

OBJECTIVE

We developed the Bias-reduction and Equity Framework for Assessing, Implementing, and Redesigning (BE-FAIR) healthcare predictive models, an applied framework tested within a large health system using a population health predictive model, aiming to minimize bias and enhance equity.

DESIGN

Retrospective cohort study conducted at an academic medical center. Data collected from September 30, 2020, to October 1, 2022, were analyzed to assess bias resulting from model use.

PARTICIPANTS

Primary care or payer-attributed patients at the medical center identified through electronic health records and claims data. Participants were stratified by race-ethnicity, gender, and social vulnerability defined by the Healthy Places Index (HPI).

INTERVENTION

BE-FAIR implementation involved steps such as an anti-racism lens application, de-siloed team structure, historical intervention review, disaggregated data analysis, and calibration evaluation.

MAIN MEASURES

The primary outcome was the calibration and discrimination of the model across different demographic groups, measured by logistic regression and area under the receiver operating characteristic curve (AUROC).

RESULTS

The study population consisted of 114,311 individuals with a mean age of 43.4 years (SD 24.0 years), 55.4% female, and 59.5% white/Caucasian. Calibration differed by race-ethnicity and HPI with significantly lower predicted probabilities of hospitalization for African Americans (0.129±0.051, p=0.016), Hispanics (0.133±0.047, p=0.004), AAPI (0.120±0.051, p=0.018), and multi-race (0.245±0.087, p=0.005) relative to white/Caucasians and for individuals in low HPI areas (0 - 25%, 0.178±0.042, p<0.001; 25 - 50%, 0.129±0.044, p=0.003). AUROC values varied among demographic groups.

CONCLUSIONS

The BE-FAIR framework offers a practical approach to address bias in healthcare predictive models, guiding model development, and implementation. By identifying and mitigating biases, BE-FAIR enhances the fairness and equity of healthcare delivery, particularly for minoritized groups, paving the way for more inclusive and effective population health strategies.

摘要

背景

人群健康项目依赖医疗保健预测模型来分配资源,但这些模型可能会使加剧边缘化社区健康差距的偏差长期存在。

目的

我们开发了用于评估、实施和重新设计医疗保健预测模型的偏差减少与公平框架(BE-FAIR),这是一个在大型医疗系统中使用人群健康预测模型进行测试的应用框架,旨在最大限度地减少偏差并增强公平性。

设计

在一家学术医疗中心进行的回顾性队列研究。分析了2020年9月30日至2022年10月1日收集的数据,以评估模型使用导致的偏差。

参与者

通过电子健康记录和理赔数据确定的该医疗中心的初级保健或由支付方指定的患者。参与者按种族、性别以及由健康场所指数(HPI)定义的社会脆弱性进行分层。

干预措施

BE-FAIR的实施涉及应用反种族主义视角、打破部门壁垒的团队结构、历史干预审查、分类数据分析以及校准评估等步骤。

主要指标

主要结果是模型在不同人口统计学组中的校准和区分能力,通过逻辑回归和受试者工作特征曲线下面积(AUROC)进行测量。

结果

研究人群包括114311人,平均年龄43.4岁(标准差24.0岁),55.4%为女性,59.5%为白人/高加索人。校准因种族和HPI而异,非裔美国人(0.129±0.051,p = 0.016)、西班牙裔(0.133±0.047,p = 0.004)、亚太裔美国人(0.120±0.051,p = 0.018)和多种族人群(0.245±0.087,p = 0.005)相对于白人/高加索人以及HPI低的地区(0 - 25%,0.178±0.042,p < 0.001;25 - 50%,0.129±0.044,p = 0.003)的个体住院预测概率显著较低。AUROC值在不同人口统计学组中有所不同。

结论

BE-FAIR框架提供了一种解决医疗保健预测模型偏差的实用方法,指导模型的开发和实施。通过识别和减轻偏差,BE-FAIR提高了医疗服务的公平性,特别是对少数群体而言,为更具包容性和有效性的人群健康策略铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c61/12405130/8cc6fa686355/11606_2025_9462_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验