Shirisha Nalla, Kannan Baranitharan, Kuppan Padmanaban, Guganathan Loganathan
Department of Computer Science and Engineering, MLR Institute of Technology, Dundigal, Hyderabad, Telangana, India.
Department of Computer Science and Engineering, Vignan's Lara Institute of Technology & Science, JNTUK, Vadlamudi, Andhra Pradesh, 522213, India.
J Mol Neurosci. 2025 Mar 15;75(1):36. doi: 10.1007/s12031-025-02329-4.
Parkinson's disease recognition (PDR) involves identifying Parkinson's disease using clinical evaluations, imaging studies, and biomarkers, focusing on early symptoms like tremors, rigidity, and bradykinesia to facilitate timely treatment. However, due to noise, variability, and the non-stationary nature of EEG signals, distinguishing PD remains a challenge. Traditional deep learning methods struggle to capture the intricate temporal and spatial dependencies in EEG data, limiting their precision. To address this, a novel fusion framework called graph embedding class-based convolutional recurrent attention network with Brown Bear Optimization Algorithm (GECCR2ANet + BBOA) is introduced for EEG-based PD recognition. Preprocessing is conducted using numerical operations and noise removal with weighted guided image filtering and entropy evaluation weighting (WGIF-EEW). Feature extraction is performed via the improved VGG19 with graph triple attention network (IVGG19-GTAN), which captures spatial and temporal dependencies in EEG data. The extracted features are classified using the graph embedding class-based convolutional recurrent attention network (GECCR2ANet), further optimized through the Brown Bear Optimization Algorithm (BBOA) to enhance classification accuracy. The model achieves 99.9% accuracy, 99.4% sensitivity, and a 99.3% F1-score on the UNM dataset, and 99.8% accuracy, 99.1% sensitivity, and 99.2% F1-score on the UC San Diego dataset, significantly outperforming existing methods. Additionally, it records an error rate of 0.5% and a computing time of 0.25 s. Previous models like 2D-MDAGTS, A-TQWT, and CWCNN achieved below 95% accuracy, while the proposed model's 99.9% accuracy underscores its superior performance in real-world clinical applications, enhancing early PD detection and improving diagnostic efficiency.
帕金森病识别(PDR)涉及通过临床评估、影像学研究和生物标志物来识别帕金森病,重点关注震颤、僵硬和运动迟缓等早期症状,以便及时治疗。然而,由于脑电图(EEG)信号存在噪声、变异性和非平稳性,区分帕金森病仍然是一项挑战。传统的深度学习方法难以捕捉EEG数据中复杂的时间和空间依赖性,限制了它们的精度。为了解决这个问题,引入了一种名为基于图嵌入类的卷积循环注意力网络与棕熊优化算法(GECCR2ANet + BBOA)的新型融合框架用于基于EEG的帕金森病识别。预处理使用数值运算以及加权引导图像滤波和熵评估加权(WGIF - EEW)进行去噪。特征提取通过带有图三重注意力网络的改进VGG19(IVGG19 - GTAN)进行,该网络捕捉EEG数据中的空间和时间依赖性。提取的特征使用基于图嵌入类的卷积循环注意力网络(GECCR2ANet)进行分类,并通过棕熊优化算法(BBOA)进一步优化以提高分类准确率。该模型在新墨西哥大学(UNM)数据集上实现了99.9%的准确率、99.4%的灵敏度和99.3%的F1分数,在加州大学圣地亚哥分校(UC San Diego)数据集上实现了99.8%的准确率、99.1%的灵敏度和99.2%的F1分数,显著优于现有方法。此外,它记录的错误率为0.5%,计算时间为0.25秒。像二维多方向聚合图时间序列(2D - MDAGTS)、自适应双树复小波变换(A - TQWT)和复值小波卷积神经网络(CWCNN)等先前的模型准确率低于95%,而所提出模型99.9%的准确率凸显了其在实际临床应用中的卓越性能,增强了帕金森病的早期检测并提高了诊断效率。