Suppr超能文献

冠状动脉搭桥术后新发房颤的人工智能预测工具的性能

Performance of an AI prediction tool for new-onset atrial fibrillation after coronary artery bypass grafting.

作者信息

Ma Hualong, Chen Dalong, Lv Weitao, Liao Qiuying, Li Jingyi, Zhu Qinai, Zhang Ying, Deng Lizhen, Liu Xiaoge, Wu Qinyang, Liu Xianliang, Yang Qiaohong

机构信息

Jinan University School of Nursing, Guangzhou, Guangdong, China.

Yunfu People's Hospital, Yunfu, Guangdong, China.

出版信息

EClinicalMedicine. 2025 Feb 24;81:103131. doi: 10.1016/j.eclinm.2025.103131. eCollection 2025 Mar.

Abstract

BACKGROUND

There is lack of tools to predict new-onset postoperative atrial fibrillation (NOAF) after coronary artery bypass grafting (CABG). We aimed to develop and validate a novel AI-based bedside tool that accurately predicts predict NOAF after CABG.

METHODS

Data from 2994 patients who underwent CABG between March 2015 and July 2024 at two tertiary hospitals in China were retrospectively analyzed. 2486 patients from one hospital formed the derivation cohort, split 7:3 into training and test sets, while the 508 patients from a separate hospital formed the external validation cohort. A stacking model integrating 11 base learners was developed and evaluated using Accuracy, Precision, Recall, F1 score, and Area Under Curve (AUC). SHapley Additive exPlanations (SHAP) values were calculated and plotted to interpret the contributions of individual characteristics to the model's predictions.

FINDINGS

Seventy-seven predictive characteristics were analyzed. The stacking model achieved superior performance with AUCs 0·931 and F1 scores 0·797 in the independent external validation, outperforming CHA2DS2-VASc, HATCH, and POAF scores (AUC 0·931 vs. 0·713, 0·708, and 0·667;  < 0·05). SHAP value indicate that the importance of predictive features for NOAF, in descending order, include: Brain natriuretic peptide, Left ventricular end-diastolic diameter, Ejection fraction, BMI, β-receptor blockers, Duration of surgery, Age, Neutrophil percentage-to-albumin ratio, Myocardial infarction, Left atrial diameter, Hypertension, and smoking status. Subsequently, we constructed an easy-to-use bedside clinical tool for NOAF risk assessment leveraging these characteristics.

INTERPRETATION

The AI-based tool offers superior prediction of NOAF, outperforming three existing predictive tools. Future studies should further explore how various patient characteristics influence the timing of NOAF onset, whether early or late.

FUNDING

This work was funded by Lingnan Nightingale Nursing Research Institute of Guangdong Province, and Guangdong Nursing Society (GDHLYJYZ202401).

摘要

背景

目前缺乏预测冠状动脉旁路移植术(CABG)后新发术后房颤(NOAF)的工具。我们旨在开发并验证一种基于人工智能的新型床边工具,以准确预测CABG术后的NOAF。

方法

回顾性分析了2015年3月至2024年7月在中国两家三级医院接受CABG的2994例患者的数据。来自一家医院的2486例患者组成推导队列,按7:3比例分为训练集和测试集,而来自另一家医院的508例患者组成外部验证队列。开发了一个整合11个基础学习器的堆叠模型,并使用准确率、精确率、召回率、F1分数和曲线下面积(AUC)进行评估。计算并绘制了SHapley加性解释(SHAP)值,以解释个体特征对模型预测的贡献。

结果

分析了77个预测特征。该堆叠模型在独立外部验证中表现出色,AUC为0.931,F1分数为0.797,优于CHA2DS2-VASc、HATCH和POAF评分(AUC分别为0.931对0.713、0.708和0.667;P<0.05)。SHAP值表明,对NOAF预测特征的重要性从高到低依次为:脑钠肽、左心室舒张末期直径、射血分数、体重指数、β受体阻滞剂、手术时间、年龄、中性粒细胞百分比与白蛋白比值、心肌梗死、左心房直径、高血压和吸烟状况。随后,我们利用这些特征构建了一种易于使用的床边临床工具,用于NOAF风险评估。

解读

基于人工智能的工具对NOAF的预测效果更佳,优于三种现有的预测工具。未来的研究应进一步探讨各种患者特征如何影响NOAF发作的时间,无论是早期还是晚期。

资助

本研究由广东省岭南南丁格尔护理研究院和广东省护理学会资助(GDHLYJYZ202401)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/96fa/11908608/d13ad9283f97/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验