Suppr超能文献

大豆抗逆性、生产力和实用性的综合研究方法:基因组学、计算建模与经济可行性综述

Integrative Approaches to Soybean Resilience, Productivity, and Utility: A Review of Genomics, Computational Modeling, and Economic Viability.

作者信息

Gai Yuhong, Liu Shuhao, Zhang Zhidan, Wei Jian, Wang Hongtao, Liu Lu, Bai Qianyue, Qin Qiushi, Zhao Chungang, Zhang Shuheng, Xiang Nan, Zhang Xiao

机构信息

College of Resources and Environment, Key Laboratory of Northern Salt-Alkali Tolerant Soybean Breeding, Ministry of Agriculture and Rural Affairs, Jilin Agricultural University, Changchun 130118, China.

Key Laboratory of Germplasm Resources Evaluation and Application of Changbai Mountain, Tonghua Normal University, Tonghua 134099, China.

出版信息

Plants (Basel). 2025 Feb 21;14(5):671. doi: 10.3390/plants14050671.

Abstract

Soybean is a vital crop globally and a key source of food, feed, and biofuel. With advancements in high-throughput technologies, soybeans have become a key target for genetic improvement. This comprehensive review explores advances in multi-omics, artificial intelligence, and economic sustainability to enhance soybean resilience and productivity. Genomics revolution, including marker-assisted selection (MAS), genomic selection (GS), genome-wide association studies (GWAS), QTL mapping, GBS, and CRISPR-Cas9, metagenomics, and metabolomics have boosted the growth and development by creating stress-resilient soybean varieties. The artificial intelligence (AI) and machine learning approaches are improving genetic trait discovery associated with nutritional quality, stresses, and adaptation of soybeans. Additionally, AI-driven technologies like IoT-based disease detection and deep learning are revolutionizing soybean monitoring, early disease identification, yield prediction, disease prevention, and precision farming. Additionally, the economic viability and environmental sustainability of soybean-derived biofuels are critically evaluated, focusing on trade-offs and policy implications. Finally, the potential impact of climate change on soybean growth and productivity is explored through predictive modeling and adaptive strategies. Thus, this study highlights the transformative potential of multidisciplinary approaches in advancing soybean resilience and global utility.

摘要

大豆是全球重要的农作物,是食物、饲料和生物燃料的关键来源。随着高通量技术的进步,大豆已成为遗传改良的关键目标。这篇综述探讨了多组学、人工智能和经济可持续性方面的进展,以提高大豆的抗逆性和生产力。基因组学革命,包括标记辅助选择(MAS)、基因组选择(GS)、全基因组关联研究(GWAS)、QTL定位、简化基因组测序(GBS)和CRISPR-Cas9、宏基因组学和代谢组学,通过培育抗逆大豆品种促进了大豆的生长发育。人工智能(AI)和机器学习方法正在改进与大豆营养品质、胁迫和适应性相关的遗传性状发现。此外,基于物联网的疾病检测和深度学习等人工智能驱动技术正在彻底改变大豆监测、早期疾病识别、产量预测、疾病预防和精准农业。此外,还对大豆衍生生物燃料的经济可行性和环境可持续性进行了严格评估,重点关注权衡和政策影响。最后,通过预测建模和适应性策略探索了气候变化对大豆生长和生产力的潜在影响。因此,本研究强调了多学科方法在提高大豆抗逆性和全球实用性方面的变革潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d17/11901646/7568866e2882/plants-14-00671-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验