Suppr超能文献

用于基于空间智能体模型的具有公共卫生特征的合成人口生成。

Synthetic population generation with public health characteristics for spatial agent-based models.

作者信息

Von Hoene Emma, Roess Amira, Kavak Hamdi, Anderson Taylor

机构信息

Department of Geography and Geoinformation Science, George Mason University, Fairfax, Virginia, United States of America.

Department of Global and Community Health, George Mason University, Fairfax, Virginia, United States of America.

出版信息

PLoS Comput Biol. 2025 Mar 17;21(3):e1012439. doi: 10.1371/journal.pcbi.1012439. eCollection 2025 Mar.

Abstract

Agent-based models (ABMs) simulate the behaviors, interactions, and disease transmission between individual "agents" within their environment, enabling the investigation of the underlying processes driving disease dynamics and how these processes may be influenced by policy interventions. Despite the critical role that characteristics such as health attitudes and vaccination status play in disease outcomes, the initialization of agent populations with these variables is often oversimplified, overlooking statistical relationships between attitudes and other characteristics or lacking spatial heterogeneity. Leveraging population synthesis methods to create populations with realistic health attitudes and protective behaviors for spatial ABMs has yet to be fully explored. Therefore, this study introduces a novel application for generating synthetic populations with protective behaviors and associated attitudes using public health surveys instead of traditional individual-level survey datasets from the census. We test our approach using two different public health surveys to create two synthetic populations representing individuals aged 18 and over in Virginia, U.S., and their COVID-19 vaccine attitudes and uptake as of December 2021. Results show that integrating public health surveys into synthetic population generation processes preserves the statistical relationships between vaccine uptake and attitudes in different demographic groups while capturing spatial heterogeneity at fine scales. This approach can support disease simulations that aim to explore how real populations might respond to interventions and how these responses may lead to demographic or geographic health disparities. Our study also demonstrates the potential for initializing agents with variables relevant to public health domains that extend beyond infectious diseases, ultimately advancing data-driven ABMs for geographically targeted decision-making.

摘要

基于主体的模型(ABM)模拟个体“主体”在其环境中的行为、相互作用和疾病传播,从而能够研究驱动疾病动态的潜在过程以及这些过程如何受到政策干预的影响。尽管健康态度和疫苗接种状况等特征在疾病结果中起着关键作用,但在主体群体初始化时,这些变量的设置往往过于简单,忽略了态度与其他特征之间的统计关系,或者缺乏空间异质性。利用人口合成方法为空间ABM创建具有现实健康态度和保护行为的群体,这一点尚未得到充分探索。因此,本研究引入了一种新颖的应用,即使用公共卫生调查而非人口普查中的传统个体层面调查数据集来生成具有保护行为和相关态度的合成群体。我们使用两项不同的公共卫生调查来测试我们的方法,以创建两个合成群体,分别代表美国弗吉尼亚州18岁及以上的个体及其截至2021年12月的新冠疫苗接种态度和接种情况。结果表明,将公共卫生调查纳入合成群体生成过程,既能保留不同人口群体中疫苗接种与态度之间的统计关系,又能在精细尺度上捕捉空间异质性。这种方法可以支持疾病模拟,旨在探索真实人群可能如何对干预措施做出反应,以及这些反应可能如何导致人口或地理上的健康差异。我们的研究还展示了用与公共卫生领域相关的变量初始化主体的潜力,这些变量超出了传染病范畴,最终推动用于地理靶向决策的数据驱动ABM的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f37b/11957385/ba4cd4590598/pcbi.1012439.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验