Nguyen Tam N T, Park Damdae, Canova Christopher T, Sangerman Jose, Srinivasan Prasanna, Ou Rui Wen, Barone Paul W, Neufeld Caleb, Wolfrum Jacqueline M, Springs Stacy L, Sinskey Anthony J, Braatz Richard D
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
Biotechnol Bioeng. 2025 Jun;122(6):1424-1440. doi: 10.1002/bit.28967. Epub 2025 Mar 18.
Increasing demand for recombinant adeno-associated virus (rAAV)-based gene therapies necessitates increased manufacturing production. Transient transfection of mammalian cells remains the most commonly used method to produce clinical-grade rAAVs due to its ease of implementation. However, transient transfection processes are often characterized by suboptimal yields and low fractions of full-to-total capsids, both of which contribute to the high cost of goods of many rAAV-based gene therapies. Our previously developed mechanistic model for rAAV2/5 production indicated that the inadequate capsid filling is due to a temporal misalignment between viral DNA replication and capsid synthesis within the cells and the repression of later phase capsid formation by Rep proteins. We experimentally validated this prediction and showed that performing multiple, time-separated doses of plasmid increases the production of rAAV. In this study, we use the insights generated by our mechanistic model to develop an intensified process for rAAV production that combines perfusion with high cell density re-transfection. We demonstrate that performing multiple, time-separated doses at high cell density boosts both cell-specific and volumetric productivity and improves plasmid utilization when compared to a single bolus at standard operating conditions. Our results establish a new paradigm for continuously manufacturing rAAV via transient transfection that improves productivity and reduces manufacturing costs.
对基于重组腺相关病毒(rAAV)的基因疗法需求不断增加,这就需要提高生产产量。由于易于实施,哺乳动物细胞的瞬时转染仍然是生产临床级rAAV最常用的方法。然而,瞬时转染过程的特点往往是产量不理想,全衣壳与总衣壳的比例较低,这两者都导致了许多基于rAAV的基因疗法的高生产成本。我们之前开发的rAAV2/5生产机制模型表明,衣壳填充不足是由于细胞内病毒DNA复制和衣壳合成之间的时间错位以及Rep蛋白对后期衣壳形成的抑制。我们通过实验验证了这一预测,并表明分多次、在不同时间给予质粒可增加rAAV的产量。在本研究中,我们利用机制模型得出的见解,开发了一种强化的rAAV生产工艺,该工艺将灌注与高细胞密度再转染相结合。我们证明,与在标准操作条件下单次推注相比,在高细胞密度下分多次、在不同时间给予质粒可提高细胞特异性和体积生产率,并提高质粒利用率。我们的结果建立了一种通过瞬时转染连续生产rAAV的新范例,可提高生产率并降低生产成本。