Huang Zitan, Oh Sol Mi, Winey Karen I, Hickner Michael A
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.
Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.
Macromolecules. 2025 Feb 20;58(5):2630-2639. doi: 10.1021/acs.macromol.4c02925. eCollection 2025 Mar 11.
Proton exchange membranes (PEMs) with high conductivity are of critical importance for the development of fuel cells, electrolyzers, and other electrochemical technologies. In this research, poly(1,1,2,2-tetrafluoro-2-phenoxyethane-1-sulfonic acid) (PTPS) with an aromatic polymer main chain and a perfluorinated superacidic polymer side chain was synthesized. The water dynamics of PTPS were characterized across various length scales using a combination of Fourier-transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR) and compared with Nafion, a standard perfluorinated PEM, and sulfonated poly(ether sulfone) (SPES 40), an aromatic PEM without perfluorinated superacid side chains. The and relaxation times of water in the samples probed by NMR increase from SPES 40 to PTPS to Nafion, indicating that the local motion of the water molecules becomes faster. This trend corresponds well with the relative fraction of bulk-like water determined using FTIR. At larger length scales, the diffusion coefficient of water was characterized using pulsed-field gradient NMR (PFG-NMR). At a longer diffusion time (Δ = 100 ms), PTPS has a smaller diffusion coefficient compared with both Nafion and SPES 40, due to restricted diffusion, and this effect is also evident in the proton conductivity of the hydrated membranes. From this comparison, it is apparent that the aromatic backbone and side chain type greatly influence the water dynamics in PEMs at various length scales and the water dynamics significantly impact the bulk proton conductivity. These insights will lead to new designs for aromatic PEMs and help to identify bottlenecks in current materials.
具有高电导率的质子交换膜(PEM)对于燃料电池、电解槽及其他电化学技术的发展至关重要。在本研究中,合成了一种具有芳香族聚合物主链和全氟超酸性聚合物侧链的聚(1,1,2,2 - 四氟 - 2 - 苯氧基乙烷 - 1 - 磺酸)(PTPS)。结合傅里叶变换红外光谱(FTIR)和核磁共振(NMR)对PTPS在不同长度尺度下的水动力学进行了表征,并与标准全氟质子交换膜Nafion以及没有全氟超酸侧链的芳香族质子交换膜磺化聚醚砜(SPES 40)进行了比较。通过NMR探测的样品中水的(T_1)和(T_2)弛豫时间从SPES 40到PTPS再到Nafion逐渐增加,这表明水分子的局部运动变得更快。这种趋势与使用FTIR测定的类本体水的相对比例非常吻合。在更大的长度尺度下,使用脉冲场梯度核磁共振(PFG - NMR)对水的扩散系数进行了表征。在较长的扩散时间((\Delta = 100) ms)下,由于扩散受限,PTPS的扩散系数比Nafion和SPES 40都小,这种效应在水合膜的质子电导率中也很明显。通过这种比较,很明显芳香族主链和侧链类型在不同长度尺度下对质子交换膜中的水动力学有很大影响,并且水动力学对本体质子电导率有显著影响。这些见解将为芳香族质子交换膜带来新的设计,并有助于识别当前材料中的瓶颈。