Suppr超能文献

迈向临床诊断:使用单功能磁共振成像、小数据集和迁移学习对阿尔茨海默病进行分类。

Towards Clinical Diagnoses: Classifying Alzheimer's Disease Using Single fMRI, Small Datasets, and Transfer Learning.

作者信息

Warren Samuel L, Moustafa Ahmed A

机构信息

School of Psychology, Faculty of Society and Design, Bond University, Gold Coast, Australia.

Department of Human Anatomy and Physiology, the Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa.

出版信息

Brain Behav. 2025 Mar;15(3):e70427. doi: 10.1002/brb3.70427.

Abstract

PURPOSE

Deep learning and functional magnetic resonance imaging (fMRI) are two unique methodologies that can be combined to diagnose Alzheimer's disease (AD). Multiple studies have harnessed these methods to diagnose AD with high accuracy. However, there are difficulties in adapting this research to real-world diagnoses. For example, the two key issues of data availability and model usability limit clinical applications. These two areas are concerned with problems of accessibility, generalizability, and methodology that may limit model adoption. For example, fMRI deep learning models require a large amount of training data, which is not widely available. Contemporary models are also not typically formatted for clinical data or created for use by non-specialized populations. In this study, we develop a deep-learning fMRI pipeline that addresses some of these issues.

METHOD

We use transfer learning to address problems with data availability. We also use semi-automated and single-image techniques (i.e., one fMRI volume per participant) to make a model that is usable for non-specialized populations. Our model was initially trained on 524 participants from the Autism Brain Imaging Data Exchange (ABIDE; Autism and controls). Our model was then transferred and fine-tuned to a small sample of 64 participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI; AD and controls).

FINDINGS AND CONCLUSION

This transfer learning model achieved an AD classification accuracy of 77% and outperformed the same model without transfer learning by approximately 30%. Accordingly, our model showed that small AD samples can be accurately classified in a clinically friendly manner.

摘要

目的

深度学习和功能磁共振成像(fMRI)是两种可结合用于诊断阿尔茨海默病(AD)的独特方法。多项研究已利用这些方法高精度地诊断AD。然而,将这项研究应用于实际诊断存在困难。例如,数据可用性和模型可用性这两个关键问题限制了临床应用。这两个领域涉及可能限制模型采用的可及性、通用性和方法学问题。例如,fMRI深度学习模型需要大量训练数据,而这些数据并不广泛可得。当代模型通常也未针对临床数据进行格式化,或并非为非专业人群使用而创建。在本研究中,我们开发了一个深度学习fMRI流程来解决其中一些问题。

方法

我们使用迁移学习来解决数据可用性问题。我们还使用半自动和单图像技术(即每位参与者一个fMRI容积)来创建一个可供非专业人群使用的模型。我们的模型最初在来自自闭症脑成像数据交换库(ABIDE;自闭症患者和对照组)的524名参与者上进行训练。然后,我们将该模型迁移并微调至来自阿尔茨海默病神经成像计划(ADNI;AD患者和对照组)的64名参与者的小样本。

研究结果与结论

这个迁移学习模型实现了77%的AD分类准确率,比未进行迁移学习的相同模型高出约30%。因此,我们的模型表明,小的AD样本可以以临床友好的方式准确分类。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01ba/11922808/eafdafc51c63/BRB3-15-e70427-g005.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验