Hai Wenqing, Bi Siyi, Yang Lili, Wu Jiatong, Huang Wenlong, Cui Mengting, Zhang Xin, Meng Jing, Chen Chunhui, Shao Huiqi, Shao Guangwei, Jiang Jinhua, Chen Nanliang
Engineering Research Center of Technical Textile, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China.
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.
Small. 2025 May;21(18):e2500155. doi: 10.1002/smll.202500155. Epub 2025 Mar 20.
The irreconcilable camouflage mechanisms of radar and infrared spectroscopy present substantial challenges to integrating multi-physics field cloaking technology. Although aerogels possess both microwave dissipation and thermal insulation, higher infrared emissivity restrict further amelioration in compatible stealth field. Herein, we propose a bilayer configuration comprised of aramid nanofiber (ANF) aerogel and infrared shielding meta-surface (ISM). The top ISM with low-pass filtering capabilities is engineered to regulate emissivity while remaining transparent to microwaves. While the bottom quaternary ANF aerogels with radar dissipation and thermal insulation are synthesized by multi-scale design strategy and heterogeneous surface engineering. Through theoretical and experimental optimization, the assembled compatible stealth composite achieves a near-perfect absorption in X-band, while the synergy of low emissivity and thermal insulation facilitates concealment in infrared windows. Specifically, the minimum reflection loss (RL) reaches -32.44 dB, effective absorption bandwidth (EAB) expands to 3.69 GHz (8.71-12.40 GHz), and the integration of effective reflection loss value (ΔH) increases to 9.92 dB GHz mm. Additionally, low thermal conductivity (0.0288 W (m K)) and average infrared emissivity (0.23 in 3-5 µm and 0.25 in 8-14 µm) can reduce infrared radiation energy by 68.1%. This research provides a new thought for the design of multispectral camouflage and demonstrates enormous potential in stealth technologies.
雷达和红外光谱不可调和的伪装机制给多物理场隐身技术的集成带来了重大挑战。尽管气凝胶兼具微波耗散和隔热性能,但较高的红外发射率限制了其在兼容隐身场方面的进一步改善。在此,我们提出了一种由芳纶纳米纤维(ANF)气凝胶和红外屏蔽超表面(ISM)组成的双层结构。顶部具有低通滤波能力的ISM被设计用于调节发射率,同时对微波保持透明。而底部通过多尺度设计策略和异质表面工程合成的四元ANF气凝胶具有雷达耗散和隔热性能。通过理论和实验优化,组装后的兼容隐身复合材料在X波段实现了近乎完美的吸收,同时低发射率和隔热的协同作用有助于在红外窗口实现隐身。具体而言,最小反射损耗(RL)达到-32.44 dB,有效吸收带宽(EAB)扩展到3.69 GHz(8.71-12.40 GHz),有效反射损耗值(ΔH)的积分增加到9.92 dB GHz·mm。此外,低导热率(0.0288 W/(m·K))和平均红外发射率(3-5 µm波段为0.23,8-14 µm波段为0.25)可将红外辐射能量降低68.1%。本研究为多光谱伪装设计提供了新思路,并在隐身技术方面展现出巨大潜力。