Karmakar Partha Sarathi, Kakiuchi Yuya, Kim Jaekwan, Harris Michael R, Huh Daniel N, Sell Alexander G, Copéret Christophe, Tonks Ian A
Department of Chemistry, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States.
Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 2, Zürich CH-8093, Switzerland.
J Am Chem Soc. 2025 Apr 2;147(13):11019-11027. doi: 10.1021/jacs.4c15765. Epub 2025 Mar 20.
Ti-catalyzed alkyne diamination and alkyne hydrohydrazination proceed through a common -aminoazatitanacyclobutene intermediate. These reactions have historically existed as processes catalyzed by distinct molecular Ti compounds, with several reports for hydrohydrazination and only a single example for diamination. Here, we demonstrate that a diamidoamine Ti catalyst, (NNN)Ti(═NN) ( (NNN)H = -methyl-',″-bis(trimethylsilyl)diethylenetriamine; = alkyl, aryl), is capable of catalyzing both diamination and hydrohydrazination, where the selectivity is dictated by simple changes to the reaction conditions. This approach capitalizes on the fact that there are entropic differences at the selectivity branch point between diamination (unimolecular) and hydrohydrazination (bimolecular). This discovery leads to an expanded substrate scope for alkyne diamination and provides an understanding of how structure-activity relationships can impact the relative rates (selectivity) of diamination and hydrohydrazination. These structure-activity relationships, anchored on N NMR descriptors, were then used to design a novel, highly active, and selective diamination catalyst, (NNN)Ti(═NN) (), which contains bulkier flanking amide ligands. More broadly, these results suggest that this strategy may be applied more generally to Ti hydrohydrazination catalysts to uncover new catalysts capable of alkyne diamination with 1,1-disubstituted hydrazines.
钛催化的炔烃双胺化反应和炔烃氢肼化反应通过一个共同的氨基氮杂环丁烯中间体进行。从历史上看,这些反应一直是由不同的分子钛化合物催化的,关于氢肼化反应有几篇报道,而双胺化反应只有一个例子。在这里,我们证明了一种二胺基胺钛催化剂(NNN)Ti(═NN)((NNN)H = N-甲基-N',N″-双(三甲基硅基)二乙三胺;R = 烷基、芳基)能够催化双胺化反应和氢肼化反应,其中选择性由反应条件的简单变化决定。这种方法利用了双胺化反应(单分子反应)和氢肼化反应(双分子反应)在选择性分支点处存在熵差这一事实。这一发现扩大了炔烃双胺化反应的底物范围,并有助于理解结构-活性关系如何影响双胺化反应和氢肼化反应的相对速率(选择性)。基于氮核磁共振描述符的这些结构-活性关系随后被用于设计一种新型的、高活性且选择性高的双胺化催化剂(NNN)Ti(═NN)(R'),它含有体积更大的侧翼酰胺配体。更广泛地说,这些结果表明,这种策略可能更普遍地应用于钛氢肼化催化剂,以发现能够与1,1-二取代肼进行炔烃双胺化反应的新催化剂。